Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Enhancing the charge transmission rate at the interface of transition metal phosphide cocatalysts is an efficient technique to reinforce the photocatalytic activity action of semiconductors, but achieving a faster interface charge transfer rate remains a challenge. This paper reported the coupling of a two-dimensional carbon layer supported CoP (CoPC) as a non-noble metal heterostructure catalyst and a two-dimensional porous graphite carbon nitride (CN) photocatalyst to enhance the transmission rate of photogenerated carriers at the interface. Detailed characterizations and mechanism research have confirmed that the PC bond and Van der Waals heterojunction at the interface function as a novel charge transmission channel, which facilitates the effective transfer of photogenerated carriers from CN to CoP. Furthermore, the large contact area exhibited by the 2D/2D Van der Waals heterojunction offers an increased number of active sites for hydrogen evolution reactions. Consequently, the composite material (CoPC/CN) formed by the coupling of CoPC and CN has an enhanced H production rate of 1503 μmol∙g∙h (AQY: 3.03 % at 400 nm) and favorable H production stability under visible light irradiation. This investigation not only provides a new idea for the regulation of interface charge transfer pathway but also offers new inspiration for the photocatalytic system's design with the synergistic impacts of 2D/2D VDW heterojunction and chemical bonds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.09.166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!