Among amphibians, freeze tolerance is a low-temperature survival strategy that has been well studied in several species. One influence on animal health and survival under adverse conditions is the gut microbiome. Gut microbes can be greatly affected by temperature fluctuations but, to date, this has not been addressed in high-altitude species. Nanorana parkeri (Anura: Dicroglossidae) lives at high altitudes on the Tibetan plateau and shows a good freeze tolerance. In the present study, we addressed two goals: (1) analysis of the effects of whole body freezing on the liver transcriptome, and (2) assess modifications of the gut microbiome as a consequence of freezing. We found that up-regulated genes in liver were significantly enriched in lipid and fatty acid metabolism that could contribute to accumulating the cryoprotectant glycerol and raising levels of unsaturated fatty acids. The results suggest the crucial importance of membrane adaptations and fuel reserves for freezing survival of these frogs. Down-regulated genes were significantly enriched in the immune response and inflammatory response, suggesting that energy-consuming processes are inhibited to maintain metabolic depression during freezing. Moreover, freezing had a significant effect on intestinal microbiota. The abundance of bacteria in the family Lachnospiraceae was significantly increased after freezing exposure, which likely supports freezing survival of N. parkeri. The lower abundance of bacteria in the family Peptostreptococcaceae in frozen frogs may be associated with the hypometabolic state and decreased immune response. In summary, these findings provide insights into the regulatory mechanisms of freeze tolerance in a high-altitude amphibian at the level of gene expression and gut microbiome, and contribute to enhancing our understanding of the adaptations that support frog survival in high-altitude extreme environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbd.2023.101147 | DOI Listing |
Mol Biol Rep
January 2025
Department of Internal Medicine, Faculty of Medicine, Urmia University of Medical Sciences, Imam Khomeini Hospital, Urmia, Iran.
Inflammatory Bowel Disease (IBD) is a persistent ailment that impacts many individuals worldwide. The interaction between the immune system and gut microbiome is thought to influence IBD development. This study aimed to assess some microbiota in IBD patients compared to healthy individuals.
View Article and Find Full Text PDFBiol Open
January 2025
Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA.
The gut microbiome, which is composed of bacteria, viruses, and fungi, and is involved in multiple essential physiological processes, changes measurably as a person ages, and can be associated with negative health outcomes. Microbiome transplants have been proposed as a method to improve gut function and reduce or reverse multiple disorders, including age-related diseases. Here, we take advantage of the laboratory model organism, Drosophila melanogaster, to test the effects of transplanting the microbiome of a young fly into middle-aged flies, across multiple genetic backgrounds and both sexes, to test whether age-related lifespan could be increased, and late-life physical health declines mitigated.
View Article and Find Full Text PDFJ Pediatr Gastroenterol Nutr
January 2025
Division of Pediatric Gastroenterology, Louisiana State University-Health Science Center, New Orleans, Louisiana, USA.
Objectives: Inflammatory bowel disease (IBD) results from genetic susceptibility, gut microbiome, and environmental factors. Diet, one modifiable environmental factor, has been linked to the increased prevalence of IBD. This study aimed to evaluate a potential association between food deserts and disease severity at diagnosis.
View Article and Find Full Text PDFExpert Rev Anticancer Ther
January 2025
Department of Urology, Iwate Medical University, Shiwa, Iwate, Japan.
Introduction Immuno-oncology (IO) therapies have become integral to renal cell carcinoma (RCC) management, RCC remains a complex malignancy with diverse clinical behaviors and a heterogeneous tumor microenvironment, highlighting the need for predictive biomarkers to optimize therapy. Areas covered This review synthesizes recent findings from clinical trials, translational studies, and molecular analyses to provide an updated perspective on biomarker research for IO therapies in RCC. A literature search was conducted using PubMed, Embase, and Web of Science for articles published between January 2010 and November 2024.
View Article and Find Full Text PDFGut Microbes
December 2025
Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
, non-typhoidal spp., and enteropathogenic/enterohemorrhagic (EPEC/EHEC) are leading causes of food-borne illness worldwide. has been used to model EPEC and EHEC infection in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!