Terbium-152 is one of four terbium radioisotopes that together form a potential theranostic toolbox for the personalised treatment of tumours. As  Tb decay by positron emission it can be utilised for diagnostics by positron emission tomography. For use in radiopharmaceuticals and for activity measurements by an activity calibrator a high radionuclide purity of the material and an accurate and precise knowledge of the half-life is required. Mass-separation and radiochemical purification provide a production route of high purity Tb. In the current work, two mass-separated samples from the CERN-ISOLDE facility have been assayed at the National Physical Laboratory to investigate the radionuclide purity. These samples have been used to perform four measurements of the half-life by three independent techniques: high-purity germanium gamma-ray spectrometry, ionisation chamber measurements and liquid scintillation counting. From the four measurement campaigns a half-life of 17.8784(95) h has been determined. The reported half-life shows a significant difference to the currently evaluated half-life (ζ-score = 3.77), with a relative difference of 2.2 % and an order of magnitude improvement in the precision. This work also shows that under controlled conditions the combination of mass-separation and radiochemical separation can provide high-purity Tb.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2023.111044DOI Listing

Publication Analysis

Top Keywords

radionuclide purity
12
mass-separated samples
8
samples cern-isolde
8
positron emission
8
mass-separation radiochemical
8
half-life
6
determination terbium-152
4
terbium-152 half-life
4
half-life mass-separated
4
cern-isolde assessment
4

Similar Publications

Cd (T = 6.5 h) and Cd (T = 461.9 d) are promising non-standard gamma-emitting radionuclides with significant potential for SPECT use.

View Article and Find Full Text PDF

This work reports experimental Ge(d,n)As cross sections producing Arsenic-71 (t = 65.3 h, 28% β), a potentially useful diagnostic radionuclide. Target stacks containing two Ge foils, a Ni monitor foil, and an Al degrader were irradiated with 5.

View Article and Find Full Text PDF

Synthesis and Evaluation of a Bifunctional Chelator for Thorium-227 Targeted Radiotherapy.

J Med Chem

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Thorium-227 (Th) is an α-emitting radionuclide currently under investigation for targeted alpha therapy. Available chelators used for this isotope suffer from challenging multistep syntheses. Here, we present the synthesis and preclinical evaluation of a novel bifunctional chelator, SCN-Bn-DOTHOPO, which contains an isothiocyanate group that is suitable for conjugation to biological molecules.

View Article and Find Full Text PDF

Objective: To optimize the automated radiosynthesis of the purinergic ion channel receptor 7 (P2X7R) imaging agent F-JNJ64413739 and evaluate its potential for brain imaging in osteoporotic model rats.

Methods: A more electron-deficient nitropyridine was employed as the labeling precursor to facilitate the F-labeling. The radiosynthesis was conducted on an AllinOne synthesis module, and followed by purification via high-performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

Study of medical radioisotope production of Ac-225 by proton accelerator.

Appl Radiat Isot

December 2024

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.

Ac radionuclides have shown great potential for use as radiopharmaceuticals in cancer therapy by conjugation them with carrier molecules due to their strong cytotoxicity, suitable half-life, and ability to be used as Bi generators. The production of Ac via bombardment of Th targets with accelerated protons is currently the most widely used method in the world. In order to better quantify the achievable yields and radiopurity, this production process is simulated in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!