Primary graft dysfunction (PGD) after cardiac transplantation is a devastating complication with increasing frequency lately in the setting of donation after circulatory death (DCD). Severe PGD is commonly treated with extracorporeal membrane oxygenation (ECMO) using central or peripheral cannulation. We retrospectively reviewed the outcomes of PGD after cardiac transplantation requiring ECMO support at our center from 2015 to 2020, focused on our now preferential approach using peripheral cannulation without a priori venting. During the study period, 255 patients underwent heart transplantation at our center and 26 (10.2%) of them required ECMO for PGD. Of 24 patients cannulated peripherally 19 (79%) were alive at 30 days and 17 (71%) 1 year after transplant; two additional patients underwent central ECMO cannulation due to unfavorable size of femoral vessels and concern for limb ischemia. Successful decannulation with full graft function recovery occurred in 22 of 24 (92%) patients cannulated peripherally. Six of them had an indwelling intra-aortic balloon pump placed before the transplantation. None of the other 18 patients received a ventricular vent. In conclusion, the use of an a priori peripheral and ventless ECMO approach in patients with PGD after heart transplant is an effective strategy associated with high rates of graft recovery and survival.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MAT.0000000000002051DOI Listing

Publication Analysis

Top Keywords

cardiac transplantation
12
extracorporeal membrane
8
membrane oxygenation
8
primary graft
8
graft dysfunction
8
pgd cardiac
8
peripheral cannulation
8
patients underwent
8
patients cannulated
8
cannulated peripherally
8

Similar Publications

Objectives: HSD3B7 deficiency is a genetic disorder caused by mutations in the gene, leading to impaired bile acid synthesis and the accumulation of toxic intermediates. Affected patients typically present with cholestatic liver disease, including jaundice and progressive liver dysfunction.

Case Presentation: This case series describes three pediatric patients from two families diagnosed with HSD3B7 deficiency, each demonstrating varying clinical severity and outcomes.

View Article and Find Full Text PDF

Artificial intelligence (AI) is increasingly used in many medical specialties. However, nephrology has lagged in adopting and incorporating machine learning techniques. Nephrology is well positioned to capitalize on the benefits of AI.

View Article and Find Full Text PDF

Pump is a vital component for expelling the perfusate in small animal isolated organ normothermic machine perfusion (NMP) systems whose flexible structure and rhythmic contraction play a crucial role in maintaining perfusion system homeostasis. However, the continuous extrusion forming with the rigid stationary shaft of the peristaltic pumps can damage cells, leading to metabolic disorders and eventual dysfunction of transplanted organs. Here, we developed a novel biomimetic blood-gas system (BBGs) for preventing cell damage.

View Article and Find Full Text PDF

Human adipose-derived multipotent stromal cells enriched with IL-10 modRNA improve diabetic wound healing: Trigger the macrophage phenotype shift.

Bioeng Transl Med

January 2025

Institute of Pediatric Translational Medicine, Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine Shanghai Jiao Tong University Shanghai China.

Diabetic wounds present a significant challenge in regenerative medicine due to impaired healing, characterized by prolonged inflammation and deficient tissue repair, primarily caused by a skewed pro-inflammatory macrophage phenotype. This study investigates the therapeutic potential of interleukin-10 (IL-10) chemically modified mRNA (modRNA)-enriched human adipose-derived multipotent stromal cells (hADSCs) in a well-established murine model of diabetic wounds. The modRNAs used in this study were chemically modified using N1-methylpseudouridine-5'-triphosphate (m1Ψ) by substituting uridine-5-triphosphate.

View Article and Find Full Text PDF

Cardiovascular Disease With Hormone Therapy and Ovarian Suppression in Premenopausal Breast Cancer Survivors.

JACC CardioOncol

December 2024

Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.

Background: Hormone therapies, including aromatase inhibitors and tamoxifen, are used with ovarian suppression to improve outcomes in premenopausal patients with breast cancer. Cardiovascular impacts of these treatments among premenopausal women are unknown.

Objectives: The aim of this study was to test the hypothesis that the use of aromatase inhibitors in combination with ovarian suppression, relative to tamoxifen, is associated with greater incident cardiovascular disease (CVD) risk in premenopausal breast cancer survivors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!