Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The beech leaf disease nematode, Litylenchus crenatae subsp. mccannii, is recognized as a newly emergent nematode species that causes beech leaf disease (BLD) in beech trees (Fagus spp.) in North America. Changes of leaf morphology before emergence from the bud induced by BLD can provoke dramatic effects on the leaf architecture and consequently to tree performance and development. The initial symptoms of BLD appear as dark green, interveinal banding patterns of the leaf. Despite the fast progression of this disease, the cellular mechanisms leading to the formation of such aberrant leaf phenotype remains totally unknown. To understand the cellular basis of BLD, we employed several types of microscopy to provide an exhaustive characterization of nematode-infected buds and leaves. Histological sections revealed a dramatic cell change composition of these nematode-infected tissues. Diseased bud scale cells were typically hypertrophied and showed a high variability of size. Moreover, while altered cell division had no influence on leaf organogenesis, induction of cell proliferation on young leaf primordia led to a dramatic change in cell layer architecture. Hyperplasia and hypertrophy of the different leaf cell layers, coupled with an abnormal proliferation of chloroplasts especially in the mesophyll cell layers, resulted in the typical interveinal leaf banding. These discrepancies in leaf cell structure were depicted by an abnormal rate of cellular division of the leaf interveinal areas infected by the nematode, promoting significant increase of cell size and leaf thickness. The formation of symptomatic BLD leaves is therefore orchestrated by distinct cellular processes, to enhance the value of these feeding sites and to improve their nutrition status for the nematode. Our findings thus uncover relevant cellular events and provide a structural framework to understand this important disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553357 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292588 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!