Swarm Smart Meta-Estimator for 2D/2D Heterostructure Design.

J Chem Inf Model

Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, FIN 90014 Oulu, Finland.

Published: October 2023

Two-dimensional (2D) semiconductors are central to many scientific fields. The combination of two semiconductors (heterostructure) is a good way to lift many technological deadlocks. Although ab initio calculations are useful to study physical properties of these composites, their application is limited to few heterostructure samples. Herein, we use machine learning to predict key characteristics of 2D materials to select relevant candidates for heterostructure building. First, a label space is created with engineered labels relating to atomic charge and ion spatial distribution. Then, a meta-estimator is designed to predict label values of heterostructure samples having a defined band alignment (descriptor). To this end, independently trained k-nearest neighbors (KNN) regression models are combined to boost the regression. Then, swarm intelligence principles are used, along with the boosted estimator's results, to further refine the regression. This new "swarm smart" algorithm is a powerful and versatile tool to select, among experimentally existing, computationally studied, and not yet discovered van der Waals heterostructures, the most likely candidate materials to face the scientific challenges ahead.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598791PMC
http://dx.doi.org/10.1021/acs.jcim.3c01509DOI Listing

Publication Analysis

Top Keywords

heterostructure samples
8
heterostructure
5
swarm smart
4
smart meta-estimator
4
meta-estimator 2d/2d
4
2d/2d heterostructure
4
heterostructure design
4
design two-dimensional
4
two-dimensional semiconductors
4
semiconductors central
4

Similar Publications

Quantum Cascade Lasers (QCL) are promising semiconductor lasers, compact and powerful, but of complex design. Availability of structured data of the QCL properties can support data mining activities that seek to understand the relationship between these properties, for instance between the design and performance features. The main open source of QCL data is in scientific text which in most cases is usually unstructured.

View Article and Find Full Text PDF

Rapid Synthesis of Carbon-Supported Ru-RuO₂ Heterostructures for Efficient Electrochemical Water Splitting.

Adv Sci (Weinh)

January 2025

Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA.

Development of high-performance electrocatalysts for water splitting is crucial for a sustainable hydrogen economy. In this study, rapid heating of ruthenium(III) acetylacetonate by magnetic induction heating (MIH) leads to the one-step production of Ru-RuO₂/C nanocomposites composed of closely integrated Ru and RuO₂ nanoparticles. The formation of Mott-Schottky heterojunctions significantly enhances charge transfer across the Ru-RuO interface leading to remarkable electrocatalytic activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH.

View Article and Find Full Text PDF

The urea oxidation reaction (UOR) is characterized by a lower overpotential compared to the oxygen evolution reaction (OER) during electrolysis, which facilitates the hydrogen evolution reaction (HER) at the cathode. Charge distribution, which can be modulated by the introduction of a heterostructure, plays a key role in enhancing the adsorption and cleavage of chemical groups within urea molecules. Herein, a facile all-room temperature synthesis of functional heterojunction NiCoS/CoMoS grown on carbon cloth (CC) is presented, and the as-prepared electrode served as a catalyst for simultaneous hydrogen evolution and urea oxidation reaction.

View Article and Find Full Text PDF

UV and Visible Light-Induced Photocatalytic Efficiency of Polyaniline/Titanium Dioxide Heterostructures.

Molecules

December 2024

Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.

The concept of using polyaniline/titanium dioxide heterostructures as efficient photocatalysts is based on the synergistic effect of conducting polymer and metal oxide semiconductors. Due to inconclusive literature reports, the effect of different polyaniline/TiO ratios on photocatalytic activity under UV and visible light was investigated. In most papers, non-recommended dyes are used as model compounds to evaluate visible light activity.

View Article and Find Full Text PDF

Upconverting/magnetic Janus-like nanoparticles integrated into spiropyran micelle-like nanocarriers for NIR light- and pH- responsive drug delivery, photothermal therapy and biomedical imaging.

Colloids Surf B Biointerfaces

January 2025

Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:

The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!