Epitope-based peptide vaccine can elicit T-cell immunity against SARS-CoV-2 to clear the infection. However, finding the best epitope from the whole antigen is challenging. A peptide screening using immunoinformatics usually starts from MHC-binding peptide, immunogenicity, cross-reactivity with the human proteome, to toxicity analysis. This pipeline classified the peptides into three categories, i.e., strong-, weak-, and non-binder, without incorporating the structural aspect. For this reason, the molecular detail that discriminates the binders from non-binder is interesting to be investigated. In this study, five CTL epitopes against HLA-A*02:01 were identified from the coarse-grained molecular dynamics-guided immunoinformatics screening. The strong binder showed distinctive activities from the non-binder in terms of structural and energetic properties. Furthermore, the second residue from the nonameric peptide was most important in the interaction with HLA-A*02:01. By understanding the nature of MHC-peptide interaction, we hoped to improve the chance of finding the best epitope for a peptide vaccine candidate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553366 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292156 | PLOS |
Langmuir
December 2024
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
The dispersion of cellulose nanocrystals (CNCs) in suspensions determines the quality of the CNC-reinforced composites. Before being mixed into the composite matrix, stable suspensions must maintain a well-dispersed state, requiring proper design strategies to prevent agglomeration and precipitation. Considering the volume fraction, aspect ratio, and zeta potential, this paper proposes a coarse-grained model to simulate CNC clustering and an experimental program to observe accelerated precipitation of CNCs.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States.
Diffusion of mobile charge carriers, such as ferredoxin and plastocyanin, often constitutes a rate-determining step in photosynthetic energy conversion. The diffusion time scales typically exceed that of other primary bioenergetic processes and remain beyond the reach of direct simulation at the molecular level. We characterize the diffusive kinetics of ferredoxin and plastocyanin upon the photosystem I-rich domain of , the most abundant phototroph on Earth by mass.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 21078 Dijon Cedex, France.
Biological peptides have emerged as promising candidates for data storage applications due to their versatility and programmability. Recent advances in peptide synthesis and sequencing technologies have enabled the development of peptide-based data storage systems for realizing novel information storage technologies with enhanced capacity, durability, and data access speeds. In this study, we performed coarse-grained peptide sequencing of 12 distinct sequences through single-layer MoS solid-state nanopores (SSNs) using molecular dynamics (MD).
View Article and Find Full Text PDFJ Chem Theory Comput
December 2024
Mechanical and Industrial Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States.
In the pursuit of informing experimental techniques with in silico optimizations, we propose a pip deployable Python package, , to easily determine polymer crystallites within molecular dynamic melts and the chain orientation parameters of atomistic and coarse-grained simulations. The package supports the commonly used ⟨⟩, ⟨⟩, and ⟨⟩ order parameters based on the chain chord vector and utilizes a modified DBSCAN algorithm to determine crystalline regions. The results of analysis are written to text and LAMMPS dump files for visualization and analysis.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA.
Molecular dynamics calculations have been used to explore the influence of knots on the strength of a polymer strand. In particular, the mechanism of breaking 31, 41, 51, and 52 prime knots has been studied using two very different models to represent the polymer: (1) the generic coarse-grained (CG) bead model of polymer physics and (2) a state-of-the-art machine learned atomistic neural network (NN) potential for polyethylene derived from electronic structure calculations. While there is a broad overall agreement between the results on the influence of the pulling rate on chain rupture based on the CG and atomistic NN models, for the simple 31 and 41 knots, significant differences are found for the more complex 51 and 52 knots.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!