Permafrost soils store a substantial part of the global soil carbon and nitrogen. However, global warming causes abrupt erosion and gradual thaw, which make these stocks vulnerable to microbial decomposition into greenhouse gases. Here, we investigated the microbial response to abrupt in situ permafrost thaw. We sequenced the total RNA of a 1 m deep soil core consisting of up to 26 500-year-old permafrost material from an active abrupt erosion site. We analysed the microbial community in the active layer soil, the recently thawed, and the intact permafrost, and found maximum RNA:DNA ratios in recently thawed permafrost indicating a high microbial activity. In thawed permafrost, potentially copiotrophic Burkholderiales and Sphingobacteriales, but also microbiome predators dominated the community. Overall, both thaw-dependent and long-term soil properties significantly correlated with changes in community composition, as did microbiome predator abundance. Bacterial predators were dominated in shallower depths by Myxococcota, while protozoa, especially Cercozoa and Ciliophora, almost tripled in relative abundance in thawed layers. Our findings highlight the ecological importance of a diverse interkingdom and active microbial community highly abundant in abruptly thawing permafrost, as well as predation as potential biological control mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10599396PMC
http://dx.doi.org/10.1093/femsec/fiad123DOI Listing

Publication Analysis

Top Keywords

permafrost thaw
8
microbiome predators
8
abrupt erosion
8
microbial community
8
thawed permafrost
8
predators dominated
8
permafrost
7
microbial
5
abrupt
4
abrupt permafrost
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!