This study investigated the potential of wastepaper hydrolysate as a sustainable and low-cost carbon source for single-cell oil and protein production, attending to the growing need for alternative feedstocks and waste management strategies. Wastepaper, characterized by its high carbohydrate content, was subjected to enzymatic and chemo-enzymatic treatments for carbohydrate release. The chemo-enzymatic treatment performed better, yielding 65.3 g l-1 of fermentable sugars. A total of 62 yeast strains were screened for single-cell oil accumulation, identifying Rhodotorula mucilaginosa M1K4 as the most advantageous oleaginous yeast. M1K4 lipid production was optimized in liquid culture, and its fatty acid profile was analyzed, showing a high content of industrially valuable fatty acids, particularly palmitic (28%) and oleic (51%). Batch-culture of M1K4 in a 3-l reactor demonstrated the strain's ability to utilize wastepaper hydrolysate as a carbon source, with dry cell weight, total lipid and protein production of 17.7 g l-1, 4.5 g l-1, and 2.1 g l-1, respectively. Wastepaper as a substrate provides a sustainable solution for waste management and bioproduction. This research highlights the potential of R. mucilaginosa for lipid and protein production from wastepaper hydrolysate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsyr/foad044 | DOI Listing |
FEMS Yeast Res
January 2023
CONAHCYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Biotecnología Industrial, Camino Arenero 1227, El Bajío, 45019 Zapopan, Jalisco, México.
This study investigated the potential of wastepaper hydrolysate as a sustainable and low-cost carbon source for single-cell oil and protein production, attending to the growing need for alternative feedstocks and waste management strategies. Wastepaper, characterized by its high carbohydrate content, was subjected to enzymatic and chemo-enzymatic treatments for carbohydrate release. The chemo-enzymatic treatment performed better, yielding 65.
View Article and Find Full Text PDFSci Total Environ
June 2023
Department of Water Resource and Environmental Engineering, East China University of Technology, Guanglan Blvd 418, Nanchang, Jiangxi 330013, China. Electronic address:
As a downstream process output, biobutanol can be produced via acetone, butanol, and ethanol (ABE) fermentation from lipid-extracted algae (LEA), but the leftover residue has not been treated for additional value. In current study, LEA were acid hydrolyzed to extract glucose into the hydrolysate, which was then used for ABE fermentation to produce butanol. In the meantime, anaerobic digestion was performed on the hydrolysis residue to produce methane and release nutrients for algae recultivation.
View Article and Find Full Text PDFWaste Manag
December 2020
Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran. Electronic address:
Co-processing of lignocellulosic wastes, e.g., garden and paper wastes, and the organic matters fraction of municipal solid waste (OMSW) in an integrated bioprocess is a possible approach to realize the potential of wastes for biobutanol production.
View Article and Find Full Text PDFWaste Manag Res
November 2011
Plant Biochemistry Research Unit, Department of Chemistry, Faculty of Science, Thaksin University, Phattalung, Thailand.
The present study investigated the development of high sugar production by optimization of an enzymatic hydrolysis process using both conventional and statistical methods, as well as the production of ethanol by the selected wastepaper source. Among four sources of pretreated wastepaper including office paper, newspaper, handbills and cardboard, office paper gave the highest values of cellulose (87.12%) and holocelluloses (89.
View Article and Find Full Text PDFBiotechnol Prog
January 1999
Department of Chemical Engineering, The University of Akron, Akron, Ohio 44325-3906, USA.
The enzymatic hydrolysate of wastepaper was evaluated for its cellulase-inducing capability and production characteristics in continuous culture of Trichoderma reesei RUT C30. Under the study conditions, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!