Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While working in the heat is a common practice within the Australian mining industry, it can lead to adverse effects on cognitive function, productivity, and physical health. This study aimed to compare the thermal strain experienced by maintenance workers and service workers in the mining industry during summer. Psycho-physiological parameters, manual dexterity, and cognitive function were assessed in maintenance workers (n = 12) and service workers (n = 12) employed at mine site villages in north-west Australia. Maintenance workers had the freedom to self-select their work intensity and predominantly worked outdoors (33.9±4.2°C, 38±18% RH), whereas service workers had to work to a fixed schedule and worked intermittently indoors (∼64% of work shift; 29.5±3.4°C, 48±8% RH) and outdoors (∼36%; 35.4±4.6°C, 47±21% RH). All workers underwent assessment at the beginning (day 2/3), middle (day 7/8), and end of their swing (day 13/14), at various time points throughout their 11-12 h shift. Service workers completed more steps (11282±1794 vs. 7774±2821; p<0.001), experienced a higher heart rate (p = 0.049) and reported higher ratings of perceived exertion (p<0.001), thermal discomfort (p<0.001), thermal sensation (p<0.001), and fatigue (p<0.012) compared to maintenance workers. Urinary specific gravity values were higher (less hydrated) in service workers (1.024±0.007) compared to maintenance workers (1.018±0.006; p = 0.007), with USG being overall higher post- compared to pre-shift (1.022±0.008 vs. 1.020±0.006; p<0.05). Core temperature, working memory capacity, processing speed and manual dexterity did not differ between occupations. Workers in hot environments who cannot self-select their work intensity should be educated about the importance of hydration before, during, and after their work-shifts and provided with more scheduled rest breaks during their shift. Employers should closely monitor workers for symptoms of heat illness, discomfort, and fatigue to ensure the health and safety of the workers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553273 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292436 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!