Reductions in response control (greater reaction time variability and commission error rate) are consistently observed in those diagnosed with attention-deficit/hyperactivity disorder (ADHD). Previous research suggests these reductions arise from a dysregulation of large-scale cortical networks. Here, we extended our understanding of this cortical-network/response-control pathway important to the neurobiology of ADHD. First, we assessed how dynamic changes in three resting-state EEG network properties thought to be relevant to ADHD (phase-synchronization, modularity, oscillatory power) related with response control during a simple perceptual decision-making task in 112 children/adolescents (aged 8-16) with and without ADHD. Second, we tested whether these associations differed in males and females who were matched in age, ADHD-status and ADHD- subtype. We found that changes in oscillatory power (as opposed to phase-synchrony and modularity) are most related with response control, and that this relationship is stronger in ADHD compared to controls. Specifically, a tendency to dwell in an electrophysiological state characterized by high alpha/beta power (8-12/13-30Hz) and low delta/theta power (1-3/4-7Hz) supported response control, particularly in those with ADHD. Time in this state might reflect an increased initiation of alpha-suppression mechanisms, recruited by those with ADHD to suppress processing unfavourable to response control. We also found marginally significant evidence that this relationship is stronger in males compared to females, suggesting a distinct etiology for response control in the female presentation of ADHD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553225 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277382 | PLOS |
Angew Chem Int Ed Engl
January 2025
Ritsumeikan University: Ritsumeikan Daigaku, Applied Chemistry, B805 Biolink, 1-1-1 Nojihigashi, 525-8577, Kusatsu, JAPAN.
Inorganic photochromic materials offer several advantages over organic compounds, including relatively inexpensive and higher thermal stability. However, tuning their color with the same component has remained a significant challenge. In this study, we demonstrate that the photochromic color of Cu-doped ZnS nanocrystals (NCs), which is initially pale yellow before light irradiation, can be tuned from gray to brown by adjusting the surface stoichiometry of Zn and S, which is controlled through the use of thiol and non-thiol ligands.
View Article and Find Full Text PDFEmerging evidence suggests that inhibitory control (IC) plays a pivotal role in science and maths counterintuitive reasoning by suppressing incorrect intuitive concepts, allowing correct counterintuitive concepts to come to mind. Neuroimaging studies have shown greater activation in the ventrolateral and dorsolateral pFCs when adults and adolescents reason about counterintuitive concepts, which has been interpreted as reflecting IC recruitment. However, the extent to which neural systems underlying IC support science and maths reasoning remains unexplored in children.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Research Laboratory CoreLab of the Medical University of Lodz, Łódź, Poland.
Background: The current study investigated the effects of high-fat diet on acute response to 3,4-methylenedioxypyrovalerone (MDPV) in mice. MDPV is a beta-cathinone derivative endowed with psychostimulant activity. Similarly to recreational substances, consumption of palatable food stimulates the mesolimbic dopaminergic system, resulting in neuroadaptive changes.
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
Purpose: Individuals with metastatic breast cancer (MBC) may live with their disease for many years. We initiated the Johns Hopkins Hope at Hopkins Clinic to assess the needs and optimize the care of these patients.
Patients And Methods: Patients with MBC who agreed to participate in the Clinic in addition to usual care completed patient-reported outcome (PRO) surveys.
ACS Sens
January 2025
CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!