Resolving the () species complex.

Mycologia

Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Central Experimental Farm, 960 Carling Ave. Ottawa, Ontario, K1A 0C6, Canada.

Published: November 2023

The (formerly ) species complex was previously composed of two morphological varieties: var. and var. . Prior attempts to resolve this morphology-based species complex using molecular techniques have been inconclusive or conflicting. The increased availability of sequenced genomes and isolates identified as var. and var. has allowed us to examine these relationships at a higher resolution and with a broader scope than previously possible. Using comparative genomics, we identified highly variable gene regions and designed primers for four new protein-coding genes for phylogenetics. These were then used alongside three known markers to generate a nuclear multigene genealogy of the species complex. From a collection of 163 isolates belonging to the target taxa, a subset of 29 was chosen to be included in this study (verified with nuclear rDNA internal transcribed spacer 1 [ITS1] and mitochondrial cytochrome oxidase subunit 1 [] sequences). Seventeen isolates of var. were selected to be representative of variations in genotype, morphology, and geographic collection location. The 12 isolates of var. included all available specimens identified either morphologically (in previous studies) or through sequence similarity with ITS1 and . Based on the fulfillment of reciprocal monophyly and observed genealogical concordance under the genealogical concordance phylogenetic species recognition, we determined that the species complex is composed of four genetically distinct species: , and .

Download full-text PDF

Source
http://dx.doi.org/10.1080/00275514.2023.2241980DOI Listing

Publication Analysis

Top Keywords

species complex
20
complex composed
8
var var
8
isolates var
8
genealogical concordance
8
species
6
var
6
complex
5
resolving species
4
complex species
4

Similar Publications

The Anoplophora chinensis (Coleoptera: Cerambycidae) (Forster), a serious phytophagous pest threatening Castanea mollissima Blume and Castanea seguinii Dode, poses risks of ecological imbalance, significant economic loss, and increased management difficulties if not properly controlled. This study employs optimized MaxEnt models to analyze the potential distribution areas of A. chinensis and its host plants under current and future climate conditions, identifying their movement pathways and relative dynamics.

View Article and Find Full Text PDF

The anionic species of antimony(V) and phosphate(V) are commonly found in the contaminated soil of mining areas, exerting a significant influence on the sorption of heavy metals and thus affecting their migration. This study quantitatively discussed the sorption mechanism of Sb and P in promoting the sorption of Cd or Cu on goethite through a series of extraction methods. In the single sorption system, the majority of Cu (87-98%) is adsorbed on goethite in the form of EDTA-extractable Cu (EF Cu, possibly inner-sphere complexes) under pH conditions of 3.

View Article and Find Full Text PDF

Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, C-NMR, and FTIR spectroscopy.

View Article and Find Full Text PDF

Application of predictive modeling tools for the identification of Ocimum spp. herbal products.

Anal Bioanal Chem

January 2025

Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA.

Species identification of botanical products is a crucial aspect of research and regulatory compliance; however, botanical classification can be difficult, especially for morphologically similar species with overlapping genetic and metabolomic markers, like those in the genus Ocimum. Untargeted LC-MS metabolomics coupled with multivariate predictive modeling provides a potential avenue for improving herbal identity investigations, but the current dearth of reference materials for many botanicals limits the applicability of these approaches. This study investigated the potential of using greenhouse-grown authentic Ocimum to build predictive models for classifying commercially available Ocimum products.

View Article and Find Full Text PDF

AntiBinder: utilizing bidirectional attention and hybrid encoding for precise antibody-antigen interaction prediction.

Brief Bioinform

November 2024

Research Center for Social Intelligence, Fudan University, Handan Street, Shanghai 200433, China.

Antibodies play a key role in medical diagnostics and therapeutics. Accurately predicting antibody-antigen binding is essential for developing effective treatments. Traditional protein-protein interaction prediction methods often fall short because they do not account for the unique structural and dynamic properties of antibodies and antigens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!