Coronavirus disease 2019 (COVID-19) is a recent pandemic caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) leading to pulmonary and extra-pulmonary manifestations due to the development of oxidative stress (OS) and hyperinflammation. The underlying cause for OS and hyperinflammation in COVID-19 may be related to the inhibition of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of antioxidative responses and cellular homeostasis. The Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm and OS in COVID-19. Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Hence, this review aimed to reveal the potential role of the Nrf2 pathway and its activators in the management of COVID-19. As well, we tried to revise the mechanistic role of the Nrf2 pathway in COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746631 | PMC |
http://dx.doi.org/10.1007/s12192-023-01379-0 | DOI Listing |
FASEB J
January 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China. Electronic address:
The emergence of cuproptosis, a novel form of regulated cell death, is induced by an excess of copper ions and has been associated with the progression of multiple diseases, including liver injury, cardiovascular disease, and neurodegenerative disorders. However, there are currently no inhibitors available for targeting specific cuproptosis-related pathways in therapy. Here, the compound merestinib (MTB) has been identified as a strong inhibitor of cuproptosis through screening of a kinase inhibitor library.
View Article and Find Full Text PDFNeuroscience
January 2025
Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China. Electronic address:
Several studies indicate that fructose can be used as an energy source for subterranean rodents. However, how subterranean rodents utilize fructose metabolism with no apparent physiological drawbacks remains poorly understood. In the present study, we measured field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from Gansu zokor and SD rats hippocampi before and 60 min after replacement of 10 mM glucose in the artificial cerebrospinal fluid (ACSF) with 10 mM fructose (gassed with 95 % O and 5 % CO).
View Article and Find Full Text PDFNeuropharmacology
January 2025
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China. Electronic address:
Oxidative stress and inflammation play important roles in diabetic-associated cognitive dysfunction (DACD). Swietenolide (Std), isolated from the fruit of Swietenia macrophylla King, exhibits various potent pharmacological activities, including antioxidant, anti-inflammatory, and anti-tumor properties. However, the effects of Std on DACD remains unexplored.
View Article and Find Full Text PDFCell Rep Med
January 2025
Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China; Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China. Electronic address:
The induction of immunogenic cell death (ICD) impedes tumor progression via both tumor cell-intrinsic and -extrinsic mechanisms, representing a robust therapeutic strategy. However, ICD-targeted therapy remains to be explored and optimized. Through kinome-wide CRISPR-Cas9 screen, NUAK family SNF1-like kinase 1 (NUAK1) is identified as a potential target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!