Luminescent metal-radicals have recently received increasing attention due to their unique properties and promising applications in materials science. However, the luminescence of metal-radicals tends to be quenched after formation of metallo-complexes. It is challenging to construct metal-radicals with highly luminescent properties. Herein, we report a highly luminescent metallo-supramolecular radical cage () constructed by the assembly of a tritopic terpyridinyl ligand with tris(2,4,6-trichlorophenyl)methyl (TTM) radical and Zn. Electrospray ionization-mass spectrometry (ESI-MS), traveling-wave ion mobility-mass spectrometry (TWIM-MS), X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and superconducting quantum interference device (SQUID) confirm the formation of a prism-like supramolecular radical cage. exhibits a remarkable photoluminescence quantum yield (PLQY) of 65%, which is 5 times that of ; meanwhile, also shows high photostability. Notably, significant magnetoluminescence can be observed for the high-concentration (15 wt % doped in PMMA film); however, the magnetoluminescence of 0.1 wt % doped film vanishes, revealing negligible spin-spin interactions between two radical centers in .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c07477 | DOI Listing |
Dalton Trans
January 2025
Chemistry Department, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland.
Stimulus-responsive molecular materials are highly desirable because of the wide range of their potential applications. In particular, switching of physical properties opens application pathways for molecular materials as sensors or actuators. Property switching in solids can be achieved by inducing single-crystal-to-single-crystal (SCSC) phase transitions.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Physics, IMN, Universidad de La Laguna, San Cristobal de La Laguna, Santa Cruz de Tenerife, Spain.
Er-doped BaF single crystals were investigated with two primary aims: first, to probe the infrared emissions from the I level (around 1.0 μm) under 1500-nm excitation and, second, to use the crystal to enhance the efficiency of silicon-based solar cells through upconversion mechanism. Upon excitation at 1500 nm, the upconversion emission spectrum of the Er-doped BaF single crystals, recorded in the range of 480-1080 nm, exhibited two well-structured visible bands at 538 and 650 nm, along with a strong near infrared emission at 971 nm.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:
Background: β-lactoglobulin (β-Lg), a major allergen in dairy products, can trigger severe allergic reactions and even fatal outcomes in infants. In this work, we develop a new low background current redox recycling strategy by conjugating the electrochemical mediator to trimetallic hybrid nanoparticles (NPs)-dispersed graphene as the signal tag, which is coupled with DNAzyme amplifications to construct highly catalytic and ultrasensitive β-Lg aptasensor.
Results: Target β-Lg molecules bind aptamers in DNAzyme/aptamer duplexes to release active DNAzymes to initiate cyclic cleavage of hairpin substrates.
Anal Chim Acta
February 2025
School of Pharmacy, China Pharmaceutical University, Nanjing, China. Electronic address:
Background: Foodborne pathogenic bacteria lead to a significant increase in illnesses and fatalities annually. In the early stage of a pathogenic bacterial infection, the concentration of bacteria in food is lower than the detection limit of most technology which enhances the difficulty in diagnosis. It is a serious challenge for researchers to develop a rapid, sensitive, accurate, and stable pathogenic bacterial determination method without costly equipment and highly skilled operators.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Chemistry, School of Advanced Engineering, UPES Dehradun, Dehradun, Uttarakhand, India.
Anions play a crucial role in various environmental, chemical, and biological processes. Among various anions, the production of perchlorate (ClO ) ion is expected to rise in upcoming years, and thus, an efficient method for the detection of perchlorate ion is highly desirable. In this effort, a pyridyl-benzimidazole-based luminescent probe (RSB1) containing two N-H donor sites has been synthesized for selective detection of perchlorate ion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!