Spin liquids─an emergent, exotic collective phase of matter─have garnered enormous attention in recent years. While experimentally many prospective candidates have been proposed and realized, theoretically modeling real materials that display such behavior may pose serious challenges due to the inherently high correlation content of such phases. Over the last few decades, the second-quantum revolution has been the harbinger of a novel computational paradigm capable of initiating a foundational evolution in computational physics. In this report, we strive to use the power of the latter to study a prototypical model, a spin-1/2-unit cell of a Kagome antiferromagnet. Extended lattices of such unit cells are known to possess a magnetically disordered spin-liquid ground state. We employ robust classical numerical techniques such as the density-matrix renormalization group (DMRG) to identify the nature of the ground state through a matrix-product state (MPS) formulation. We subsequently use the gained insight to construct an auxiliary Hamiltonian with reduced measurables and also design an ansatz that is modular and gate-efficient. With robust error-mitigation strategies, we are able to demonstrate that the said ansatz is capable of accurately representing the target ground state even on a real IBMQ backend within 1% accuracy in energy. Since the protocol is linearly scaling () in the number of unit cells, gate requirements, and the number of measurements, it is straightforwardly extendable to larger Kagome lattices that can pave the way for efficient construction of spin-liquid ground states on a quantum device.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.3c05172DOI Listing

Publication Analysis

Top Keywords

ground state
16
spin-liquid ground
12
unit cells
8
ground
5
state
5
physics-inspired quantum
4
quantum simulation
4
simulation resonating
4
resonating valence
4
valence bond
4

Similar Publications

Cognitive resilience (CR) describes the phenomenon of individuals evading cognitive decline despite prominent Alzheimer's disease neuropathology. Operationalization and measurement of this latent construct is non-trivial as it cannot be directly observed. The residual approach has been widely applied to estimate CR, where the degree of resilience is estimated through a linear model's residuals.

View Article and Find Full Text PDF

The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.

View Article and Find Full Text PDF

In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.

View Article and Find Full Text PDF

Objective: To understand the experience of children with special health needs at school.

Method: Qualitative research using Symbolic Interactionism as a theoretical framework and assumptions of Grounded Theory as a methodological framework. Data collected in a pediatric outpatient clinic of a teaching hospital in an inland city of the state of São Paulo.

View Article and Find Full Text PDF

Ph3PC - A Monosubstituted C(0) Atom in Its Triplet State.

Angew Chem Int Ed Engl

January 2025

TU Dortmund: Technische Universitat Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn Str.6, 44227, Dortmund, GERMANY.

This study introduces a novel class of carbon-centered diradicals: a monosubstituted C-atom stabilized by a phosphine. The diradical Ph3P→C was photochemically generated from a diazophosphorus ylide precursor (Ph3PCN2) and characterized by EPR and isotope-sensitive ENDOR spectroscopy at low temperatures. Ph3P→C features an axial zero-field splitting parameter D = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!