The offspring of women in the poorest socio-economic groups in Western societies have an increased risk of developing non-communicable disease in adult life. Deprivation is closely related to the consumption of a diet with an excess of energy (sugar and fat), salt and a shortage of key vitamins. To test the hypothesis that this diet adversely affects the development and long-term health of the offspring, we have formulated two rodent diets, one with a nutrient profile corresponding to the diet of pregnant women in the poorest socio-economic group (DEP) and a second that incorporated current UK recommendations for the diet in pregnancy (REC). Female rats were fed the experimental diets for the duration of gestation and lactation and the offspring compared with those from a reference group fed the AIN-93G diet. The growth trajectory of DEP and REC offspring was reduced compared with the AIN-93G. The REC offspring diet had a transient increase in adipose reserves at weaning, but by 30 weeks of age the body composition of all three groups was similar. The maternal diet had no effect on the homoeostatic model assessment index or the insulin tolerance of the offspring. Changes in hepatic gene expression in the adult REC offspring were consistent with an increased hepatic utilisation of fatty acids and a reduction in lipogenesis. These results show that despite changes in growth and adiposity maternal metabolic adaptation minimises the adverse consequences of the imbalanced maternal diet on the metabolism of the offspring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803821PMC
http://dx.doi.org/10.1017/S0007114523002210DOI Listing

Publication Analysis

Top Keywords

maternal diet
12
rec offspring
12
diet
10
offspring
9
diet growth
8
women poorest
8
poorest socio-economic
8
diet deprivation
4
deprivation pregnancy
4
pregnancy rat
4

Similar Publications

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome.

View Article and Find Full Text PDF

Objective: To test the short and long-term effects of consuming carbohydrate-rich beverages on patient-centred outcomes after caesarean delivery under spinal anaesthesia.

Study Design: A prospective randomised controlled study. Place and Duration of the Study: Department of Obstetrics and Gynaecology, Karaman Training and Research Hospital, Karaman, Turkiye, between May 2023 and February 2024.

View Article and Find Full Text PDF

T follicular helper cell expansion and hyperimmunoglobulinemia with spontaneous IgE production to dietary antigens in IgA-deficient mice.

Mucosal Immunol

January 2025

Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States. Electronic address:

Immunoglobulin A (IgA), the most abundantly produced antibody at mucosal surfaces, is thought to play key roles in immune responses to respiratory and enteric pathogens and in the regulation of commensal colonization. Low IgA levels have been associated with recurrent infections and immune dysregulation, including inflammatory bowel disease and autoimmunity. Levels of IgA in maternal breast milk and infant stool are both inversely associated with the emergence of immune responses to food antigens in infants and, in naturally resolving food sensitivity and immunotherapy protocols, the induction of IgA antibodies to dietary antigens has been associated with the acquisition of food tolerance.

View Article and Find Full Text PDF

Skeletal muscle plays a significant role in both local and systemic energy metabolism. The current investigation aims to explore the role of the Bambi gene in skeletal muscle, focusing on its implications for muscle hypertrophy and systemic metabolism. We hypothesize that skeletal muscle-specific deletion of Bambi induces muscle hypertrophy, improves metabolic performance, and activates thermogenic adipocytes via the reprogramming of progenitor of iWAT, offering potential therapeutic strategies for metabolic syndromes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!