BMP6 participates in the pathogenesis of adolescent idiopathic scoliosis by regulating osteopenia.

J Cell Physiol

Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.

Published: November 2023

Adolescent idiopathic scoliosis (AIS) is a complex disease characterized by three-dimensional structural deformities of the spine. Its pathogenesis is associated with osteopenia. Bone-marrow-derived mesenchymal stem cells (BMSCs) play an important role in bone metabolism. We detected 1919 differentially expressed mRNAs and 744 differentially expressed lncRNAs in BMSCs from seven patients with AIS and five patients without AIS via high-throughput sequencing. Multiple analyses identified bone morphogenetic protein-6 (BMP6) as a hub gene that regulates the abnormal osteogenic differentiation of BMSCs in AIS. BMP6 expression was found to be decreased in AIS and its knockdown in human BMSCs significantly altered the degree of osteogenic differentiation. Additionally, CAP1-217 has been shown to be a potential upstream regulatory molecule of BMP6. We showed that CAP1-217 knockdown downregulated the expression of BMP6 and the osteogenic differentiation of BMSCs. Simultaneously, knockout of BMP6 in zebrafish embryos significantly increased the deformity rate. The findings of this study suggest that BMP6 is a key gene that regulates the abnormal osteogenic differentiation of BMSCs in AIS via the CAP1-217/BMP6/RUNX2 axis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.31111DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
16
differentiation bmscs
12
adolescent idiopathic
8
idiopathic scoliosis
8
differentially expressed
8
patients ais
8
gene regulates
8
regulates abnormal
8
abnormal osteogenic
8
bmscs ais
8

Similar Publications

Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.

View Article and Find Full Text PDF

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Effect of nanoparticulate CaCO on the biological properties of calcium silicate cement.

Sci Rep

January 2025

Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.

This study aimed to evaluate the effects of nanoparticulate CaCO (NPCC) on the biological properties of calcium silicate-based cements (CSCs), including their cytotoxicity, in vitro osteogenic activity, and interactions with rat femur tissue. The average size of NPCC was 90.3±26.

View Article and Find Full Text PDF

Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2.

View Article and Find Full Text PDF

Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!