is a promising probiotic, because it combines probiotic properties of and the ability of to form endospores. Due to this hybrid relationship, cultivation of this organism is challenging. As the probiotics market continues to grow, there is a new focus on the production of these microorganisms. In this work, a strain-specific bioprocess for was developed to support growth on one hand and ensure sporulation on the other hand. This circumstance is not trivial, since these two metabolic states are contrary. The developed bioprocess uses a modified chemically defined medium which was further investigated in a one-factor-at-a-time assay after adaptation. A transfer from the shake flask to the bioreactor was successfully demonstrated in the scope of this work. The investigated process parameters included temperature, agitation and pH-control. Especially the pH-control improved the sporulation in the bioreactor when compared to shake flasks. The bioprocess resulted in a sporulation efficiency of 80%-90%. This corresponds to a sevenfold increase in sporulation efficiency due to a transfer to the bioreactor with pH-control. Additionally, a design of experiment (DoE) was conducted to test the robustness of the bioprocess. This experiment validated the beforementioned sporulation efficiency for the developed bioprocess. Afterwards the bioprocess was then scaled up from a 1 L scale to a 10 L bioreactor scale. A comparable sporulation efficiency of 80% as in the small scale was achieved. The developed bioprocess facilitates the upscaling and application to an industrial scale, and can thus help meet the increasing market for probiotics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545977 | PMC |
http://dx.doi.org/10.1002/elsc.202300210 | DOI Listing |
Nucleic Acids Res
January 2025
Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
In baker's yeast, genes encoding ribosomal proteins often exist as duplicate pairs, typically with one 'major' paralog highly expressed and a 'minor' less expressed paralog that undergoes controlled expression through reduced splicing efficiency. In this study, we investigate the regulatory mechanisms controlling splicing of the minor paralog of the uS4 protein gene (RPS9A), demonstrating that its splicing is repressed during vegetative growth but upregulated during meiosis. This differential splicing of RPS9A is mediated by two transcription factors, Rim101 and Taf14.
View Article and Find Full Text PDFFront Physiol
December 2024
Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States.
Impaired intestinal integrity in broilers reduces performance and health, highlighting the importance of accurately measuring intestinal permeability (IP) to maintain gut health. The objective of this study was to evaluate the efficiency of iohexol as an IP marker in broilers challenged with , , or both during both peak challenge (day [d] 21) and recovery (d 28) periods. One-day-old male Ross 708 birds (n = 56) were distributed into 4 treatment groups: NC (no-challenge control); EM (challenged with 5,000 .
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Center of Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo of Bahia (UFRB), Cruz das Almas 44380-000, BA, Brazil.
Sisal () bole rot caused by is the main phytosanitary problem affecting sisal in the Brazilian semi-arid region. The aim of this study was to evaluate spp. as biocontrol agents for sisal bole rot.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Centro de Investigación y Desarrollo en Ciencia y Tecnología de los Alimentos (CCT- La Plata CONICET, CIC-PBA, Facultad de Ciencias Exactas, UNLP), Argentina; Cátedra de Microbiología. Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP), Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina. Electronic address:
Clostridioides difficile is a spore-forming pathogen capable of causing severe disease in humans. Critical stages in the biological cycle of this microorganism include sporogenesis/germination and toxin production by vegetative cells. Antagonizing these pivotal events could aid in prevention and treatment to manage this pathogen.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA.
Histone tail phosphorylation has diverse effects on a myriad of cellular processes, including cell division, and is highly conserved throughout eukaryotes. Histone H3 phosphorylation at threonine 3 (H3T3) during mitosis occurs at the inner centromeres and is required for proper biorientation of chromosomes on the mitotic spindle. While H3T3 is also phosphorylated during meiosis, a possible role for this modification has not been tested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!