Due to its additional frequency response, dual-frequency ultrasound has advantages over conventional ultrasound, which operates at a specific frequency band. Moreover, a tunable frequency from a single transducer enables sonographers to achieve ultrasound images with a large detection area and high resolution. This facilitates the availability of more advanced techniques that simultaneously require low- and high-frequency ultrasounds, such as harmonic imaging and image-guided therapy. In this study, we present a novel method for dual-frequency ultrasound generation from a ferroelectric piezoelectric micromachined ultrasound transducer (PMUT). Uniformly designed transducer arrays can be used for both deep low-resolution imaging and shallow high-resolution imaging. To switch the ultrasound frequency, the only requirement is to tune a DC bias to control the polarization state of the ferroelectric film. Flextensional vibration of the PMUT membrane strongly depends on the polarization state, producing low- and high-frequency ultrasounds from a single excitation frequency. This strategy for dual-frequency ultrasounds meets the requirement for either multielectrode configurations or heterodesigned elements, which are integrated into an array. Consequently, this technique significantly reduces the design complexity of transducer arrays and their associated driving circuits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545730 | PMC |
http://dx.doi.org/10.1038/s41378-023-00595-z | DOI Listing |
Micromachines (Basel)
December 2024
Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.
The effect of residual stress or heat on ferroelectrics used to convert photons into electricity was investigated. The data analysis reveals that when the PET-PZT piezoelectric transducer is UV-irradiated with a 405 nm wavelength, it becomes a photon-heat-stress electric energy converter and capacitator. Our objective was to evaluate the PET-PZT photon-heat-stress electric energy conversion performance and the role of the light's wavelength and intensity.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Department of Applied Mechanics, Faculty of Civil Engineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania.
This paper presents the design, development, and investigation of a novel piezoelectric inertial motor whose target application is the low Earth orbit (LEO) temperature conditions. The motor utilizes the inertial stick-slip principle, driven by the first bending mode of three piezoelectric bimorph plates, and is compact and lightweight, with a total volume of 443 cm and a mass of 28.14 g.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou 510006, China.
Serpentine microstructures offer excellent physical properties, making them highly promising in applications in stretchable electronics and tissue engineering. However, existing fabrication methods, such as electrospinning and lithography, face significant challenges in producing microscale serpentine structures that are cost-effective, efficient, and controllable. These methods often struggle with achieving precise control over fiber morphology and scalability.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Electrical and Computer Engineering Department, Northeastern University, Boston, MA 02115, USA.
Magnetoelectric (ME) devices combining piezoelectric and magnetostrictive materials have emerged as powerful tools to miniaturize and enhance sensing and communication technologies. This paper examines recent developments in bulk acoustic wave (BAW) and surface acoustic wave (SAW) ME devices, which demonstrate unique capabilities in ultra-sensitive magnetic sensing, compact antennas, and quantum applications. Leveraging the mechanical resonance of BAW and SAW modes, ME sensors achieve the femto- to pico-Tesla sensitivity ideal for biomedical applications, while ME antennas, operating at acoustic resonance, allow significant size reduction, with high radiation gain and efficiency, which is suited for bandwidth-restricted applications.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China.
With advancements in small-scale research fields, precision manipulation has become crucial for interacting with small objects. As research progresses, the demand for higher precision in manipulation has led to the emergence of ultrahigh-precision engineering (UHPE), which exhibits significant potential for various applications. Traditional rigid-body manipulators suffer from issues like backlash and friction, limiting their effectiveness at smaller-scale applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!