Introduction: The recent boosting of genomic data in durum wheat ( subsp. ) offers the opportunity to better understand the effects of breeding on the genetic structures that regulate the expression of traits of agronomic interest. Furthermore, the identification of DNA markers useful for marker-assisted selection could also improve the reliability of technical protocols used for variety protection and registration.

Methods: Within this motivation context, 123 durum wheat accessions, classified into three groups: landraces (LR), ancient (OC) and modern cultivars (MC), were evaluated in two locations, for 34 agronomic traits, including UPOV descriptors, to assess the impact of changes that occurred during modern breeding.

Results: The association mapping analysis, performed with 4,241 SNP markers and six multi-locus-GWAS models, revealed 28 reliable Quantitative Trait Nucleotides (QTNs) related to plant morphology and kernel-related traits. Some important genes controlling flowering time and plant height were in linkage disequilibrium (LD) decay with QTNs identified in this study. A strong association for yellow berry was found on chromosome 6A () in a region containing the subunit, a gene involved in starch metabolism. The harbored the PPO locus, with the associated marker () in LD decay with and . Interestingly, the , identified by for flag leaf glaucosity, mapped less than 1 Mb from the (), thus representing a good candidate for supporting the morphological DUS traits also with molecular markers. LD haplotype block approach revealed a higher diversity, richness and length of haploblocks in MC than OC and LR (580 in LR, 585 in OC and 612 in MC), suggesting a possible effect exerted by breeding programs on genomic regions associated with the agronomic traits.

Discussion: Our findings pave new ways to support the phenotypic characterization necessary for variety registration by using a panel of cost-effectiveness SNP markers associated also to the UPOV descriptors. Moreover, the panel of associated SNPs might represent a reservoir of favourable alleles to use in durum wheat breeding and genetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546023PMC
http://dx.doi.org/10.3389/fpls.2023.1206517DOI Listing

Publication Analysis

Top Keywords

durum wheat
16
haplotype block
8
upov descriptors
8
snp markers
8
traits
5
breeding
4
breeding effects
4
durum
4
effects durum
4
wheat
4

Similar Publications

DNA methylation in wheat: current understanding and future potential for enhancing biotic and abiotic stress tolerance.

Physiol Mol Biol Plants

December 2024

Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India.

Unlabelled: DNA methylation is a paramount epigenetic mark that helps balance gene expression post-transcriptionally. Its effect on specific genes determines the plant's holistic development and acclimatization during adversities. L.

View Article and Find Full Text PDF

Screening tests for specific immunoglobulin E (sIgE) to food allergens, such as the multiple allergen simultaneous test (MAST), are widely used in patients with suspected food allergies in South Korea. We evaluated whether MAST could effectively screen wheat-dependent exercise-induced anaphylaxis (WDEIA) and α-gal syndrome (AGS). We retrospectively reviewed patients with WDEIA and AGS diagnosed with unequivocal history and positive sIgE results for omega-5 gliadin and α-gal using ImmunoCAP, respectively.

View Article and Find Full Text PDF

Elevated CO (eCO) stimulates productivity and nutrient demand of crops. Thus, comprehensively understanding the crop phosphorus (P) acquisition strategy is critical for sustaining agriculture to combat climate changes. Here, wheat ( L) was planted in field in the eCO (550 µmol mol) and ambient CO (aCO, 415 µmol mol) environments.

View Article and Find Full Text PDF

Increasing wheat ( L.) yield and grain protein concentration (GPC) without excessive nitrogen (N) inputs requires understanding the genotypic variations in N accumulation, partitioning, and utilization strategies. This study evaluated whether high protein genotypes exhibit increased N accumulation (herein also expressed as N nutrition index, NNI) and partitioning (including remobilization from vegetative organs) compared to low-protein genotypes under low and high N conditions.

View Article and Find Full Text PDF

Breeders adjust wheat heading dates to improve regional adaptability and reduce or mitigate yield losses caused by meteorological disasters, pests and diseases. The Ppd-1 genes play a crucial role in determining wheat sensitivity to changes in day-length and serve as key regulators of heading dates once the vernalization requirement is satisfied. In this study, we identified a new allelic variant of the promoter region, Ppd-B1a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!