Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Small frame nucleic acids (FNAs) serve as excellent carrier materials for various functional nucleic acid molecules, showcasing extensive potential applications in biomedicine development. The carrier module and function module combination is crucial for probe design, where an improper combination can significantly impede the functionality of sensing platforms. This study explores the effect of various combinations on the sensing performance of nanodevices through simulations and experimental approaches. Variances in response velocities, sensitivities, and cell uptake efficiencies across different structures are observed. Factors such as the number of functional molecules loaded, loading positions, and intermodular distances affect the rigidity and stability of the nanostructure. The findings reveal that the structures with full loads and moderate distances between modules have the lowest potential energy. Based on these insights, a multisignal detection platform that offers optimal sensitivity and response speed is developed. This research offers valuable insights for designing FNAs-based probes and presents a streamlined method for the conceptualization and optimization of DNA nanodevices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202302652 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!