Background And Aim: Fiber posts are widely used in endodontically treated teeth with extensive loss of coronal structure. The purpose of this study was to investigate immediate and the long-term effects of chlorhexidine (CHX) and benzalkonium chloride (BAC) application, on the push-out bond strength of fiber posts.
Material And Methods: Sixty mandibular premolars were decoronated, and root canal treatment was performed. After post space preparation, the specimens were divided into three groups according to the post space-surface pretreatment (n = 20); no surface treatment (control group-Group 1), 2% CHX application (Group 2), and 1% BAC application (Group 3). A self-curing adhesive cement and an etch and rinse adhesive were used for the cementation of posts. Three sections (one cervical, one middle, and one apical) of 1 mm thickness were prepared from each specimen. A push-out test was performed immediately on the half of the specimen sections (n = 10). The other half of the specimen sections were subjected to 20.000 thermal cycles before applying the push-out test (n = 10). The failure mode of each specimen was observed under a stereomicroscope at ×40 magnification.
Results: The data were analyzed by one-way analysis of variance (ANOVA), Tukey Honestly significant difference (HSD), and Tamhane tests (P = 0.05). The cervical thirds displayed the highest, and the apical thirds showed the lowest values in all groups (P < 0.05), except the control-aged group (P = 0.554). The aged control groups' values were found to be significantly lower than the aged CHX and BAC groups (P < 0.001). Aging significantly reduced the bond strength values of specimens in control groups (P < 0.001). However, aging did not significantly affect the push-out bond strength values of CHX and BAC groups (P > 0.050). The failure types were adhesive between the post and cement (type 1) in all groups, except control-aged group (type 2).
Conclusion: The application of 2% chlorhexidine or 1% BAC may be an essential step that can be taken to preserve the bond strength of fiber posts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/njcp.njcp_434_22 | DOI Listing |
J Phys Chem A
January 2025
Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
The strategy of designing efficient room-temperature phosphorescence (RTP) emitters based on hydrogen bond interactions has attracted great attention in recent years. However, the regulation mechanism of the hydrogen bond on the RTP property remains unclear, and corresponding theoretical investigations are highly desired. Herein, the structure-property relationship and the internal mechanism of the hydrogen bond effect in regulating the RTP property are studied through the combination of quantum mechanics and molecular mechanics methods (QM/MM) coupled with the thermal vibration correlation function method.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
This study investigates the equilibrium geometries of four different Se isomers using the coupled cluster single and double perturbative (CCSD(T)) method, extrapolating to the complete basis sets. The ground-state geometry of the Se isomer with the C structure (2.8715 Å, 2.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pediatric Dentistry Faculty of Dental Medicine, University of Damascus, Damascus, Syria.
This in vitro study aims to evaluate various surface treatments on the shear bond strength and failure mode of CAD/CAM PMMA teeth to the heat-polymerized acrylic denture base. The study sample consisted of 100 teeth that were divided equally into five groups: Group 1: denture artificial teeth (control), Group 2: PMMA teeth without surface treatment, Group 3: PMMA teeth with MMA etching, Group 4: PMMA teeth with sandblasting (aluminum oxide particles), and Group 5: PMMA teeth with perpendicular grooves. The shear bond strength test was performed using a universal testing machine and the failure mode was recorded.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410006, Hunan, China.
Acrylic pressure-sensitive adhesives (PSAs) are widely applied in transdermal drug delivery systems (TDDS). However, the molecular mechanisms underlying the effect of functional groups of PSAs on drug release and transdermal permeation properties remain insufficiently clear. In this study, we investigated the effect of acrylic PSAs' functional groups on the in vitro release and transdermal permeation properties of a model drug guanfacine (GFC).
View Article and Find Full Text PDFJ Prosthodont Res
January 2025
Institute of Dentistry, Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Turku, Finland.
Purpose: This study investigated the bond strength between short fiber-reinforced resin composite (SFC) and dentin following air abrasion with various types of abrasive particles.
Methods: A total of 120 human molars were prepared for a shear bond strength (SBS) test of the resin composite. The teeth were divided into 12 groups (n = 10/group) based on the air abrasion particle used.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!