Reusing of alloy has become a need of time due to the increasing demand, depletion of resources, and substantial increase in their price. The alloys used require a long-term stay in the oral cavity exposed to a wet environment, so they must have good wear resistance, biocompatibility, and mechanically good strength. In this study, the vertical marginal discrepancy, surface roughness, and microhardness of the new and recast nickel-chromium (base metal) alloys were evaluated. 125 wax patterns were fabricated from a customized stainless steel master die with a heavy chamfer cervical margin divided into 5 groups. Each group had 25 samples. Group A: 25 wax patterns were cast using 100% by weight of new alloy, Group B: the casting was done by using 75% new alloy and 25% alloy by weight, Group C: wax patterns were cast using 50% new alloy and 50% alloy, Group D: 25% new alloy and 75% alloy and Group E: 100% recast alloy. The vertical marginal discrepancy was measured by an analytical scanning microscope, microhardness was tested on a universal testing machine, and surface roughness was on a tester of surface roughness. Castings produced using new alloys were better than those obtained with reused alloys. Alloys can be reused till 50% by weight along with the new alloy and accelerated casting technique can be used to save the lab time to fabricate castings with acceptable vertical marginal discrepancy, microhardness, and surface roughness. This indicated that 50% recasting of (Ni-Cr) can be used as a good alternative for the new alloy from an economical point of view.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551011PMC
http://dx.doi.org/10.1038/s41598-023-40377-1DOI Listing

Publication Analysis

Top Keywords

surface roughness
20
vertical marginal
16
marginal discrepancy
16
alloy
12
wax patterns
12
alloy group
12
discrepancy microhardness
8
microhardness surface
8
recast alloy
8
group wax
8

Similar Publications

Objective: To evaluate the influence of in situ acid erosion on the structural and optical properties of nanoparticulate bisacrylic resin with different surface treatments, evaluating surface roughness (Ra), knoop microhardness (KHN), color change (ΔE, ΔL, ΔC, ΔH), contrast (CR) and translucency (TP).

Methods: Eighty specimens were made (n = 10 per group) and the following surface treatments were applied: U-unpolished; A-polishing with Astropol rubber tips (Ivoclar); S-Biscover LV surface sealant (Bisco) and S-Palaseal surface sealant (kulzer). For the in situ experiment, 10 volunteers wore an intraoral appliance containing eight specimens (two specimens per experimental group), with only one specimen from each experimental group being subjected to the acid process.

View Article and Find Full Text PDF

Annealing plays a crucial role for in enhancing the gas sensing properties of MOF-derived TiO (MIL-125). Generally, TiO transforms into different polymorphs (anatase, rutile, and brookite) during annealing, each with unique crystal structures and gas sensing properties. The aim of this research was to investigate the impact of annealing (500-650 °C) on the properties of MIL-125, which had not been previously studied.

View Article and Find Full Text PDF

Preventive effects of taxifolin on dental caries in vitro and in vivo.

Arch Oral Biol

January 2025

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China. Electronic address:

Objectives: The present study aimed to explore the inhibitory effect of taxifolin (TAX) on Streptococcus mutans (S. mutans) in vitro and evaluated the anti-caries efficacy of TAX in vivo.

Design: The anti-microbial and anti-biofilm properties of TAX were examined on the S.

View Article and Find Full Text PDF

Leveraging the nanotopography of filamentous fungal chitin-glucan nano/microfibrous spheres (FNS) coated with collagen (type I) for scaffolded fibroblast spheroids in regenerative medicine.

Tissue Cell

January 2025

School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:

Numerous naturally occurring biological structures have inspired the development of innovative biomaterials for a wide range of applications. Notably, the nanotopographical architectures found in natural materials have been leveraged in biomaterial design to enhance cell adhesion and proliferation and improve tissue regeneration for biomedical applications. In this study, we fabricated three-dimensional (3D) chitin-glucan micro/nanofibrous fungal-based spheres coated with collagen (type I) to mimic the native extracellular matrix (ECM) microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!