Optimization and bio-fabrication of phyto-mediated silver nanoparticles (Ag-NPs) for antibacterial potential.

J Biomol Struct Dyn

Biotechnology of Macromolecules Research Group, Department of Life and Earth Sciences, Instituto de Productos Naturales y Agrobiología-Consejo Superior de Investigaciones Científicas, (IPNA-CSIC), Tenerife, Spain.

Published: September 2024

This report examines the bio-fabrication of silver nanoparticles (Ag-NPs) utilizing AgNO and leaf extract of as the precursor material. In order to maximize the antibacterial efficacy against , , and , the reaction conditions for the green fabrication of Ag-NPs were optimized. A one factor at a time approach (volume concentration of extract, volume concentration of AgNO, pH and temperature) was used to optimize the best condition, and results were assessed through UV-visible spectroscopy and particle size distribution. The results showed that 20 mL of plant extract, 80 mL of AgNO, pH 08, 100 °C temperature were the optimum reaction conditions under which we obtained the smallest Ag-NPs (7 nm). The scanning electron microscopy and X-ray diffraction analysis confirmed the spherical and crystalline nature of Ag-NPs. The antibacterial activity assay demonstrated a high antibacterial effect of Ag-NPs against , , and , and that impact was greater with smaller-sized nanoparticles (7 nm). This study shows that leaf extract of is a possible medium for the green fabrication of Ag-NPs, and control over reaction factors can establish the characteristics and antibacterial effectiveness of Ag-NPs.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2242960DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
nanoparticles ag-nps
8
ag-nps antibacterial
8
leaf extract
8
reaction conditions
8
green fabrication
8
fabrication ag-nps
8
volume concentration
8
ag-nps
7
antibacterial
5

Similar Publications

Introduction: Malaria caused by spp. is the most hazardous disease in the world. It is regarded as a life-threatening hematological disorder caused by parasites transferred to humans by the bite of Anopheles mosquitoes.

View Article and Find Full Text PDF

In this work, a series of three-dimensional (3D) SERS substrate were successfully fabricated by assembling silver nanoparticles (AgNPs) onto a porous gelatin sponge (GS) for highly sensitive thiram residues detection in vegetables. These 3D micro-nanostructures could induce the sufficient surface plasmon resonance (SPR) effect of noble metals on their surface and achieve high enrichment of pollutant molecules. As crystal violet (CV) was used as a probe molecule, the lowest CV solution could be detected at 10 M, and the enhancement factor (EF) was calculated to be 9.

View Article and Find Full Text PDF

Silver nanowire/gold nanosphere binary plasma-assembled membranes for sensitive SERS detection of homocysteine.

Mikrochim Acta

December 2024

School of Materials and Chemical Engineering, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.

Silver nanowire (Ag NW)/gold nanosphere (Au NS) binary plasma films were prepared using plasma coupling between Ag NWs and Au NSs. The plasma films formed by combining these two noble metals showed better sensitivity for SERS detection with a minimum detection concentration of 10 M for R6G compared to pure Ag NWs or Au NSs. After rational optimisation of the substrate preparation process, the substrate showed good homogeneity, reproducibility and stability.

View Article and Find Full Text PDF

Graphene-Oxide-Assisted Electroless Cu Plating on a Glass Substrate.

Langmuir

December 2024

Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan.

In recent years, the advancement of high-frequency communication systems, particularly 5G and future 6G technologies, has increased the need for substrates that minimize signal loss and electromagnetic interference. Glass substrates are highly desirable for these applications due to their low dielectric constant and excellent surface smoothness. However, conventional electroless Cu plating methods struggle to achieve strong adhesion between Cu and the smooth, low-polarity surface of glass, making this an important challenge to address.

View Article and Find Full Text PDF

pH-Adjusted Liquid SERS Approach: Toward a Reliable Plasma-Based Early Stage Lung Cancer Detection.

Anal Chem

December 2024

College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350117, China.

Surface-enhanced Raman spectroscopy (SERS) provides a rapid and nondestructive method for biological plasma analysis, offering unparalleled sensitivity and specificity. However, most current studies predominantly employ the drop-cast method, where liquid samples are dried on the SERS substrate for spectral recording. While effective, this method is both time-consuming and inconsistent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!