The Dam1 complex is essential for mitotic progression across evolutionarily divergent fungi. Upon analyzing amino acid (aa) sequences of Dad2, a Dam1 complex subunit, we identified a conserved 10-aa-long Dad2 signature sequence (DSS). An arginine residue (R126) in the DSS is essential for viability in that possesses point centromeres. The corresponding arginine residues are functionally important but not essential for viability in and ; both carry several kilobases long regional centromeres. The purified recombinant Dam1 complex containing either Dad2 or Dad2 failed to bind microtubules (MTs) or form any visible rings like the WT complex. Intriguingly, functional analysis revealed that the requirement of the conserved arginine residue for chromosome biorientation and mitotic progression reduced with increasing centromere length. We propose that plasticity of the invariant arginine of Dad2 in organisms with regional centromeres is achieved by conditional elevation of the kinetochore protein(s) to enable multiple kinetochore MTs to bind to each chromosome. The capacity of a chromosome to bind multiple kinetochore MTs may mask the deleterious effects of such lethal mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551642PMC
http://dx.doi.org/10.26508/lsa.202201720DOI Listing

Publication Analysis

Top Keywords

dam1 complex
12
mitotic progression
8
arginine residue
8
essential viability
8
regional centromeres
8
multiple kinetochore
8
kinetochore mts
8
dad2
5
functional plasticity
4
plasticity chromosome-microtubule
4

Similar Publications

Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases.

View Article and Find Full Text PDF

A communication hub for phosphoregulation of kinetochore-microtubule attachment.

Curr Biol

June 2024

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA. Electronic address:

The Mps1 and Aurora B kinases regulate and monitor kinetochore attachment to spindle microtubules during cell division, ultimately ensuring accurate chromosome segregation. In yeast, the critical spindle attachment components are the Ndc80 and Dam1 complexes (Ndc80c and DASH/Dam1c, respectively). Ndc80c is a 600-Å-long heterotetramer that binds microtubules through a globular "head" at one end and centromere-proximal kinetochore components through a globular knob at the other end.

View Article and Find Full Text PDF

Microtubule end-on attachment maturation regulates Mps1 association with its kinetochore receptor.

Curr Biol

June 2024

Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany. Electronic address:

Faithful chromosome segregation requires that sister chromatids establish bi-oriented kinetochore-microtubule attachments. The spindle assembly checkpoint (SAC) prevents premature anaphase onset with incomplete attachments. However, how microtubule attachment and checkpoint signaling are coordinated remains unclear.

View Article and Find Full Text PDF

Kinetochore-microtubule error correction for biorientation: lessons from yeast.

Biochem Soc Trans

February 2024

Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K.

Accurate chromosome segregation in mitosis relies on sister kinetochores forming stable attachments to microtubules (MTs) extending from opposite spindle poles and establishing biorientation. To achieve this, erroneous kinetochore-MT interactions must be resolved through a process called error correction, which dissolves improper kinetochore-MT attachment and allows new interactions until biorientation is achieved. The Aurora B kinase plays key roles in driving error correction by phosphorylating Dam1 and Ndc80 complexes, while Mps1 kinase, Stu2 MT polymerase and phosphatases also regulate this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!