A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of refractive error and its progression: a machine learning-based algorithm. | LitMetric

Objective: Myopia is the refractive error that shows the highest prevalence for younger ages in Southeast Asia and its projection over the next decades indicates that this situation will worsen. Nowadays, several management solutions are being applied to help fight its onset and development, nonetheless, the applications of these techniques depend on a clear and reliable assessment of risk to develop myopia.

Methods And Analysis: In this study, population-based data of Chinese children were used to develop a machine learning-based algorithm that enables the risk assessment of myopia's onset and development. Cross-sectional data of 12 780 kids together with longitudinal data of 226 kids containing age, gender, biometry and refractive parameters were used for the development of the models.

Results: A combination of support vector regression and Gaussian process regression resulted in the best performing algorithm. The Pearson correlation coefficient between prediction and measured data was 0.77, whereas the bias was -0.05 D and the limits of agreement was 0.85 D (95% CI: -0.91 to 0.80D).

Discussion: The developed algorithm uses accessible inputs to provide an estimate of refractive development and may serve as guide for the eye care professional to help determine the individual best strategy for management of myopia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551949PMC
http://dx.doi.org/10.1136/bmjophth-2023-001298DOI Listing

Publication Analysis

Top Keywords

refractive error
8
machine learning-based
8
learning-based algorithm
8
onset development
8
prediction refractive
4
error progression
4
progression machine
4
algorithm
4
algorithm objective
4
objective myopia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!