Assembly of typical steppe community and functional groups along the precipitation gradient from 1985 to 2022.

Sci Total Environ

State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China.

Published: January 2024

Long-term observations have shown that structure and function of grasslands have changed due to climate change over the past decades. However, little is known about how grasslands respond to climate change along the precipitation gradient, and potential mechanisms remain elusive. Here, we utilize a long-term experiment in typical steppe to explore universal and differential mechanisms of community and functional groups assembly along the precipitation gradient. Our results indicated that the sensitivity of community and functional groups assembly to climate change was related to local precipitation. The strength of the positive effects of climate change on aboveground biomass, species richness, and their relationship of community decreased modestly with local precipitation. The mechanism behind this was the change in plant community composition of the precipitation-induced, annuals that was more responsive to climate change decreased as increased local precipitation. Furthermore, current and past climate both drove community and functional group assembly, and the role of past climate diminished with increasing local precipitation. Among them, climate fluctuation, average climate and current climate were the most critical climate indicators affecting community and functional groups assembly in low, medium and high precipitation sites, respectively. In conclusion, climatic change do not always exert identical effects on grasslands along the precipitation gradient. This could be critical importance for improving our ability to predict future changes in grassland ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167545DOI Listing

Publication Analysis

Top Keywords

community functional
20
climate change
20
functional groups
16
precipitation gradient
16
local precipitation
16
groups assembly
12
climate
11
precipitation
9
typical steppe
8
current climate
8

Similar Publications

Reductive acetogenesis is a dominant process in the ruminant hindgut.

Microbiome

January 2025

Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.

Background: The microbes residing in ruminant gastrointestinal tracts play a crucial role in converting plant biomass to volatile fatty acids, which serve as the primary energy source for ruminants. This gastrointestinal tract comprises a foregut (rumen) and hindgut (cecum and colon), which differ in structures and functions, particularly with respect to feed digestion and fermentation. While the rumen microbiome has been extensively studied, the cecal microbiome remains much less investigated and understood, especially concerning the assembling microbial communities and overriding pathways of hydrogen metabolism.

View Article and Find Full Text PDF

Background: Acquiring representative bacterial 16S rRNA gene community profiles in plant microbiome studies can be challenging due to the excessive co-amplification of host chloroplast and mitochondrial rRNA gene sequences that reduce counts of plant-associated bacterial sequences. Peptide Nucleic Acid (PNA) clamps prevent this by blocking PCR primer binding or binding within the amplified region of non-target DNA to stop the function of DNA polymerase. Here, we applied a universal chloroplast (p)PNA clamp and a newly designed mitochondria (m)PNA clamp to minimise host chloroplast and mitochondria amplification in 16S rRNA gene amplicon profiles of leaf, bark and root tissue of two oak species (Quercus robur and Q.

View Article and Find Full Text PDF

Background: Fatigue and inactivity are linked to decreased health-related quality of life (HRQoL) in chronic conditions. A multidimensional approach to activity pacing may improve HRQoL by promoting physical activity (PA) and alleviating fatigue. Addressing fatigue across chronic conditions is crucial, especially when underlying causes are unknown.

View Article and Find Full Text PDF

Background: A significant gap exists in understanding the effectiveness of intra-class (same-class) level peer mentorship programmes designed to enhance academic performance, well-being, and student involvement among underperforming medical students. This study assessed the effectiveness of intra-class (same-class) peer mentorship programme on the academic performances, subjective well-being and school engagement of academically underperforming medical students in Nigeria.

Methods: This was a quasi-experimental research consisting of the pretest-posttest control design at Nnamdi Azikiwe University, Awka, Nigeria.

View Article and Find Full Text PDF

Investigating the role of intratumoral Streptococcus mitis in gastric cancer progression: insights into tumor microenvironment.

J Transl Med

January 2025

Department of Pathogen Biology, Key Laboratory for Pathogen Infection and Control of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, Jiangsu, P.R. China.

Growing evidence implicates that intratumoral microbiota are closely linked to cancer progression; however, research on the role of these microbiota in the development of gastric cancer remains limited. Here, using 16 S rRNA sequencing, tumor tissue proteomics and serum cytokines analysis, we identified enrichment of specific microbial communities within tumors of gastric cancer patients, possibly affecting the tumor microenvironment by immune modulation, metabolic processes, and inflammatory responses. Based on the results of in vivo experiments and intratumoral microbiota analysis, we found that Streptococcus mitis can inhibit gastric cancer progression via suppressing M2 macrophage polarization and infiltration, as well as altering the intratumoral microbial community.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!