Eluates from façades at the beginning of their service time affect aquatic and sediment organisms.

Sci Total Environ

Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, Coburg, Germany; Proteomics Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; University of Leipzig, Institute for Analytical Chemistry, Leipzig, Germany. Electronic address:

Published: January 2024

Biocides are used in building materials to prevent microbial growth during storage (in-can preservatives) as well as after application (film preservatives). These compounds can leach out from the material into the environment and harm non-target organisms. In this study, the ecotoxicological effect of leachates at the beginning of a façade lifetime, on sediment and aquatic organisms was examined. For this purpose, leaching tests were carried out in the setting of a natural weathering experiment and a laboratory immersion with façade samples consisting of render/paint systems. The leaching experiments were performed with three different formulations, namely no biocides containing control, a formulation containing only in-can preservatives (benzisothiazolinone (BIT), methylchloroisothiazolinone (CMIT), and methylisothiazolinone (MIT)), and, as is common in organic building materials, containing both in-can and film preservatives (octylisothiazolinone (OIT) and terbutryn (TB)). In order to elucidate the effects of in-can and film preservative-containing eluates the toxicity of the generated leachables was evaluated on the model of several aquatic and sediment organisms, namely luminescent bacteria (Vibrio fischeri), green algae (Scenedesmus subspicatus), Salmonella typhimurium TA1535/pSK1002 (umu-test), fish-egg (Danio rerio), Chironomus riparius, and Lumbriculus variegatus. It was demonstrated that in-can preservatives leach out rapidly at the beginning of a façade lifetime and despite the short half-life of these compounds in aqueous solutions, they could be detected at high concentrations in the eluates. Furthermore, eluates from early sampling times, predominantly containing in-can preservatives, were found to cause toxic effects on sediment and aquatic organisms. The results demonstrate that in-can preservatives can impose a significant stress factor on the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167531DOI Listing

Publication Analysis

Top Keywords

in-can preservatives
20
aquatic sediment
8
sediment organisms
8
building materials
8
film preservatives
8
façade lifetime
8
sediment aquatic
8
aquatic organisms
8
in-can film
8
in-can
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!