Hypoxia inhibits HUNK kinase activity to induce epithelial-mesenchymal transition.

Biochem Biophys Res Commun

Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China. Electronic address:

Published: November 2023

Hypoxia is a common hallmark of cancer and plays a crucial role in promoting epithelial-mesenchymal transition (EMT). Hormonally Upregulated Neu-associated Kinase (HUNK) regulates EMT through its kinase activity. However, whether hypoxia is involved in HUNK-mediated EMT is incompletely understood. This study unveils an association between HUNK kinase activity and hypoxia in colorectal cancer (CRC). Importantly, hypoxia does not alter the expression levels of HUNK, but directly affects the phosphorylation levels of downstream proteins with indication of HUNK activity. Functionally, the upregulation of migration, invasion, and expression of EMT markers in CRC cells under hypoxic conditions can be attributed, in part, to the downregulation of HUNK-mediated phosphorylation of downstream proteins. These findings highlight the intricate relationship between HUNK, hypoxia and the molecular mechanisms of cancer EMT. Understanding these mechanisms may provide valuable insights into therapeutic targets for inhibiting cancer metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2023.09.074DOI Listing

Publication Analysis

Top Keywords

kinase activity
12
hunk kinase
8
epithelial-mesenchymal transition
8
activity hypoxia
8
downstream proteins
8
hypoxia
6
hunk
6
emt
5
hypoxia inhibits
4
inhibits hunk
4

Similar Publications

Background: The most common malignant type of kidney cancer is clear cell renal cell carcinoma (ccRCC). The expression levels of hyaluronan-mediated motility receptor (HMMR) in many tumor types are significantly elevated. HMMR is closely associated with tumor-related progression, treatment resistance, and poor prognosis, and has yet to be fully investigated in terms of its expression patterns and molecular mechanisms of action in ccRCC.

View Article and Find Full Text PDF

Protective mechanism of safflower yellow injection on myocardial ischemia-reperfusion injury in rats by activating NLRP3 inflammasome.

BMC Complement Med Ther

January 2025

Institute of Basic Medical Sciences of Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China.

Objectives: This study intended to explore whether the protective effect safflower yellow injection (SYI) on myocardial ischemia-reperfusion (I/R) injury in rats mediated of the NLRP3 inflammasome signaling.

Methods: The I/R model was prepared by ligating the left anterior descending coronary artery for 45 min and then releasing the blood flow for 150 min. 96 male Wistar rats were randomly divided into sham group, I/R group, Hebeishuang group (HBS), SYI high-dose group (I/R + SYI-H), SYI medium-dose group (I/R + SYI-M) and SYI low-dose group (I/R + SYI-L).

View Article and Find Full Text PDF

Background: Myelofibrosis (MF) is a clonal haematopoietic disease, with median overall survival for patients with primary MF only 6.5 years. The most frequent gene mutation found in patients is JAK2, causing constitutive activation of the kinase and activation of downstream signalling.

View Article and Find Full Text PDF

Background: Paliperidone is a second-generation antipsychotic and the main active metabolite of risperidone, formulated to provide consistent therapeutic effects through an extended-release system, designed to provide consistent therapeutic effects through an extended-release formulation. While commonly used in clinical practice, switching from risperidone to paliperidone, particularly during valproate therapy, can pose challenges due to potential pharmacokinetic interactions that may increase the risk of extrapyramidal symptoms (EPS). Despite clinical observations suggesting these interactions, case reports documenting such adverse effects are scarce.

View Article and Find Full Text PDF

Proper differentiation of bone marrow stromal cells (BMSCs) into adipocytes is crucial for maintaining skeletal homeostasis. However, the underlying regulatory mechanisms remain incompletely understood, posing a challenge for the treatment of age-related osteopenia and osteoporosis. Here, through comprehensive gene expression analysis during BMSC differentiation into adipocytes, we identified the forkhead transcription factor Foxk2 as a key regulator of this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!