Hydrochar from agricultural wastes is regarded as a prospective and low-cost material to activate peroxymonosulfate (PMS) for degrading pollutants. Herein, a novel in-situ N-doped hydrochar composite (RHCM4) was synthesized using montmorillonite and waste reed straw rich in nitrogen as pyrolysis catalyst and carbon source, respectively. The fabricated RHCM4 possessed excellent PMS activation performance for decomposing quinclorac (QC), a refractory herbicide, with a high removal efficiency of 100.0% and mineralization efficiency of 75.1%. The quenching experiments and electron spin resonance (ESR) detection disclosed free radicals (•OH, •SO, and •O) and non-radicals (O) took part in the QC degradation process. Additionally, the catalytic mechanisms were analyzed in depth with the aid of various characterizations. Moreover, the QC degradation intermediates and pathways were clarified by density functional theory calculations and HPLC-MS. Importantly, phytotoxicity experiments showed that RHCM4/PMS could efficaciously mitigate the injury of QC to Solanaceae crops (pepper, tomato, and tobacco). These findings give a new idea for enhancing the catalytic activity of hydrochar from agricultural wastes and broaden its application in the field of agricultural environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.119090 | DOI Listing |
Bone Jt Open
December 2024
Department of Trauma & Orthopaedics, The Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, UK.
Aims: Arthroplasty has been shown to generate the most waste among all orthopaedic subspecialties, and it is estimated that hip and knee arthroplasty generate in excess of three million kg of waste annually in the UK. Infectious waste generates up to ten times more CO2 compared with recycled waste, and previous studies have shown that over 90% of waste in the infectious stream is misallocated. We assessed the effect of real-time waste segregation by an unscrubbed team member on waste generation in knee and hip arthroplasty cases, and compared this with a simple educational intervention during the 'team brief' at the start of the operating list across two sites.
View Article and Find Full Text PDFCureus
October 2024
Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, USA.
Environ Sci Pollut Res Int
October 2024
College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
J Environ Manage
November 2024
LEAF - Linking Landscape, Environment, Agriculture and Food, Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal. Electronic address:
A pilot-scale study on sludge treatment reed beds investigated the combined effects of earthworms and Arundo donax on sewage sludge dewatering and residual sludge quality. Four units were tested: one planted with earthworms, one planted without earthworms, one unplanted with earthworms, and one control, each unit replicated. Over a year, 24 cycles of sludge (dry and volatile solid contents of 24.
View Article and Find Full Text PDFControllable sorption selectivity in zeolites is crucial for their application in catalysis, gas separation and ion-exchange. Whilst existing approaches to achieving sorption selectivity with natural zeolites typically rely on screening for specific geological deposits, here we develop partial interzeolite transformation as a straightforward and highly tuneable method to achieve sorption selectivity forming dual-phase composites with simultaneous control of both phase-ratio and morphology. The dual-cation (strontium and caesium) exchange properties of a series of granular mordenite/zeolite P composites formed from a parent natural mordenite material are demonstrated in complex, industrially relevant multi-ion environments pertinent to nuclear waste management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!