Transparent silica glass is one of the most essential materials used in society and industry, owing to its exceptional optical, thermal, and chemical properties. However, glass is extremely difficult to shape, especially into complex and miniaturized structures. Recent advances in three-dimensional (3D) printing have allowed for the creation of glass structures, but these methods involve time-consuming and high-temperature processes. Here, we report a photochemistry-based strategy for making glass structures of micrometer size under mild conditions. Our technique uses a photocurable polydimethylsiloxane resin that is 3D printed into complex structures and converted to silica glass via deep ultraviolet (DUV) irradiation in an ozone environment. The unique DUV-ozone conversion process for silica microstructures is low temperature (~220°C) and fast (<5 hours). The printed silica glass is highly transparent with smooth surface, comparable to commercial fused silica glass. This work enables the creation of arbitrary structures in silica glass through photochemistry and opens opportunities in unexplored territories for glass processing techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550221PMC
http://dx.doi.org/10.1126/sciadv.adi2958DOI Listing

Publication Analysis

Top Keywords

silica glass
12
transparent silica
8
glass structures
8
glass
6
low-temperature printing
4
printing transparent
4
silica
4
glass microstructures
4
microstructures transparent
4
glass essential
4

Similar Publications

This study investigated the effects of resin composites (RCs) containing surface pre-reacted glass ionomer (S-PRG) filler on the dentin microtensile bond strength (μTBS) of HEMA-free and HEMA-containing universal adhesives (UAs). Water sorption (WS) and solubility (SL), degree of conversion (DC), and ion release were measured. The UAs BeautiBond Xtreme (BBX; 0% HEMA), Modified Adhesive-1 (E-BBX1; 5% HEMA), Modified Adhesive-2 (E-BBX2; 10% HEMA), and two 2-step self-etch adhesives (2-SEAs): FL-BOND II (FBII; with S-PRG filler) and silica-containing adhesive (E-FBII) were used.

View Article and Find Full Text PDF

Despite the ubiquitous use of glasses, their simultaneous susceptibility toward scratch-induced defects and atmospheric hydration deteriorates their mechanical and chemical durability. Here, it is demonstrated that the deposition of a few-layer graphene provides unprecedented wear resistance to silica glass in aqueous conditions. To this extent, nanoscale scratch tests are carried out on graphene-glass surfaces via contact-mode atomic force microscopy with chemically inert and reactive tips.

View Article and Find Full Text PDF

Trends in pH-triggered strategies for dental resins aiming to assist in preventing demineralization: A scoping review.

J Dent

December 2024

Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro (UFRJ), Rodolpho Paulo Rocco, 325, Rio de Janeiro, RJ 21941-617, Brazil. Electronic address:

Objectives: To identify and map the literature on the current state of pH-triggered strategies for resin-based materials used in direct restorative dentistry, focusing on innovative compounds, their incorporation and evaluation methods, and the main outcomes.

Data And Sources: Through a search across PubMed, Scopus, Embase, Web of Science, LILACS, Cochrane Library databases, and Google Scholar, this review identified studies pertinent to pH-responsive dental materials, excluding resin-modified glass ionomer cements.

Study Selection: From the 981 records identified, 19 in vitro studies were included, concentrating on resin-based composite resins (50 %), dentin adhesives (25 %), and sealants (25 %).

View Article and Find Full Text PDF

Purpose: This study aims to compare the surface roughness (SR), contact angle (CA), surface free energy (SFE), and bacterial adhesion of resin-based materials used in additive, subtractive, and conventional manufacturing techniques.

Materials And Methods: This study involved four groups of 23 specimens: Indirect conventional resin composite (ICRC), subtractively manufactured resin composite (SMRC), additively manufactured resin composite (AMRC), and soda-lime-silica glass (SLSG). One specimen per group was analyzed by Energy Dispersive X-ray Spectroscopy (EDS) before polishing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!