This study presents the utilization of MoS as a diffusion barrier for metal interconnects, in situ transmission electron microscopy (TEM) observations are employed for comprehensive understanding. The diffusion-blocking ability of MoS is discussed by the diffusion and phase transformation between Ru and Si via TEM diffraction and imaging. When the sample is heated to a high temperature such that MoS loses the ability to block the diffusion, Si diffuses through the MoS into the Ru layer, leading to the formation of RuSi. Both multilayer and monolayer (1L) MoS exhibit exceptional diffusion-blocking ability up to 800 °C. Furthermore, plasma-treated 1L-MoS shows a slightly low diffusion-blocking temperature of 750 °C, while the dangling bonds in MoS improve the interfacial adhesion. These findings suggest that MoS holds great potential as a diffusion barrier for metal interconnects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c10656 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States.
Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.
Dynamic random access memory (DRAM) has been a cornerstone of modern computing, but it faces challenges as technology scales down, particularly due to the mismatch between reduced storage capacitance and increasing OFF current. The capacitorless 2T0C DRAM architecture is recognized for its potential to offer superior area efficiency and reduced refresh rate requirements by eliminating the traditional capacitor. The exploration of two-dimensional (2D) materials further enhances scaling possibilities, though the absence of dangling bonds complicates the deposition of high-quality dielectrics.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Physics, Kyung Hee University, Seoul 02447, Republic of Korea.
We report the complex dielectric function = + of MoS/WS and WS/MoS heterostructures and their constituent monolayers MoS and WS for an energy range from 1.5 to 6.0 eV and temperatures from 39 to 300 K.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
The design and preparation of advanced hybrid nanofibers with controllable microstructures will be interesting because of their potential high-efficiency applications in the environmental and energy domains. In this paper, a simple and efficient strategy was developed for preparing hybrid nanofibers of zinc oxide-molybdenum disulfide (ZnO-MoS) grown on polyimide (PI) nanofibers by combining electrospinning, a high-pressure hydrothermal process, and in situ growth. Unlike simple composite nanoparticles, the structure is shown in PI-ZnO to be like the skeleton of a tree for the growth of MoS "leaves" as macro-materials with controlled microstructures.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
This study focuses on achieving high photocatalytic activity using MoS/TiO heterostructures (MOT). To this end, MoS and TiO were synthesized by employing hydrothermal synthesis techniques, and then MoS/TiO heterostructures were synthesized by using 1:1, 1:2, 1:3, and 1:4 ratios of MoS and TiO, respectively. While the structural and electronic changes for the 1:2 and 1:3 ratios were relatively minor, significant modifications in bandgaps and morphology were observed for the 1:1 and 1:4 ratios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!