Typhoid toxin hijacks Wnt5a to establish host senescence and Salmonella infection.

Cell Rep

School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK. Electronic address:

Published: October 2023

Damage to our genome causes acute senescence in mammalian cells, which undergo growth arrest and release a senescence-associated secretory phenotype (SASP) that propagates the stress response to bystander cells. Thus, acute senescence is a powerful tumor suppressor. Salmonella enterica hijacks senescence through its typhoid toxin, which usurps unidentified factors in the stress secretome of senescent cells to mediate intracellular infections. Here, transcriptomics of toxin-induced senescent cells (TxSCs) and proteomics of their secretome identify the factors as Wnt5a, INHBA, and GDF15. Wnt5a establishes a positive feedback loop, driving INHBA and GDF15 expression. In fibroblasts, Wnt5a and INHBA mediate autocrine senescence in TxSCs and paracrine senescence in naive cells. Wnt5a synergizes with GDF15 to increase Salmonella invasion. Intestinal TxSCs undergo apoptosis without Wnt5a, which is required for establishing intestinal TxSCs. The study reveals how an innate defense against cancer is co-opted by a bacterial pathogen to cause widespread damage and mediate infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2023.113181DOI Listing

Publication Analysis

Top Keywords

typhoid toxin
8
acute senescence
8
senescent cells
8
wnt5a inhba
8
inhba gdf15
8
intestinal txscs
8
wnt5a
6
senescence
6
cells
5
toxin hijacks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!