The limited structural diversity of three-dimensional covalent organic frameworks (3D COFs) greatly restricts their application exploration. Therefore, there is an urgent need to expand their library of molecular building blocks, such as the development of highly connected (>4 reaction sites) polyhedral nodes. Herein, by precisely controlling the precursor conformation, we rationally designed a new 6-connected triangular prism node derived from the triphenylbenzene molecule and further used it to construct a novel 3D COF (3D-TMTAPB-COF) via imine condensation reaction. Surprisingly, without the addition of competing reagents, 3D-TMTAPB-COF crystallized directly into single crystals of ∼15 μm in size and was determined to adopt a rare 6-fold interpenetrated (Class IIIa interpenetration) topology. In addition, 3D-TMTAPB-COF showed a high SF adsorption capacity (60.9 cm g) and good SF/N selectivity (335) at 298 K and 1 bar, superior to those of most crystalline porous materials. This work not only confirms the possibility of growing large-size single-crystal 3D COFs formed with strong covalent bonds by a solvothermal method in the absence of modulators, but also reports a novel triangular prism node for future construction of 3D COFs with interesting applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c08712DOI Listing

Publication Analysis

Top Keywords

triangular prism
12
prism node
12
three-dimensional covalent
8
covalent organic
8
6-connected triangular
8
single-crystal three-dimensional
4
organic framework
4
framework constructed
4
constructed 6-connected
4
node limited
4

Similar Publications

DNA logic nanomachine for the accurate identification of multiple microRNAs in tumor cells.

Talanta

January 2025

School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China. Electronic address:

The use of dynamic DNA logic circuits for disease diagnosis at the molecular level plays a considerable role in biomedical fields. Nevertheless, how to create programmable nanomachines based on molecular logical gates to accurately identify multiple biomarkers from tumor cells remains a pivotal challenge. Herein, we developed a DNA-based nanomachine for analyzing and imaging multiple microRNAs (miRNAs) in cancerous cells with a logical AND operation.

View Article and Find Full Text PDF

Tri-Prism Origami Enabled Soft Modular Actuator for Reconfigurable Robots.

Soft Robot

January 2025

Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China.

Soft actuators hold great potential for applications in surgical operations, robotic manipulation, and prosthetic devices. However, they are limited by their structures, materials, and actuation methods, resulting in disadvantages in output force and dynamic response. This article introduces a soft pneumatic actuator capable of bending based on triangular prism origami.

View Article and Find Full Text PDF

Ultrastable Imidazole-linked Porous Organic Cages for Ammonia Capture and Detection.

Angew Chem Int Ed Engl

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China.

Here, we report the facile synthesis of imidazole-linked porous organic cages (IPOCs) via an in situ cyclization reaction protocol. Specifically, three IPOCs with [2+4] lantern-like structures and one with a [3+6] triangular prism structure were successfully prepared through condensation reactions between tetraformyl-functionalized calix[4]arene and bis(o-phenylenediamine) monomers in a single pot. Notably, these IPOCs exhibit high porosity, with Brunauer-Emmett-Teller (BET) specific surface areas reaching up to 1162 m g.

View Article and Find Full Text PDF

Biomolecular condensates (BCs) are crucial membraneless organelles formed through the process of liquid-liquid phase separation (LLPS) involving proteins and nucleic acids. These LLPS processes are tightly linked with essential cellular activities. Stress granules (SGs), functioning as cytoplasmic BCs, play indispensable roles in maintaining cellular homeostasis and are implicated in diseases like cancers and neurodegenerative disorders.

View Article and Find Full Text PDF

Evolution from [Zn] to a record-high [Zn] subblock and engineering a hierarchical supramolecular framework for enhanced iodine uptake.

Chem Sci

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China

Hierarchical supramolecular frameworks are being designed and constructed for various applications, yet the controlled assembly and process understanding incorporating giant building blocks remains a great challenge. Here, we report a strategy of "rivet" substitution and "hinge" linkage for the controlled assembly of the hierarchical supramolecular framework. The replacement of two "rivet" ethylene glycol (EG) molecules for triangular prism [Zn] (a small block in 1) with a 1,3-propanediol (PDO) provides space for a "hinge" linkage from adjacent ligands, thus providing a hierarchical (from micro- to mesopores, from the internal cavity to external surface) supramolecular framework (2) based on a coordinative subblock with the record number of zinc ions ([Zn]).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!