It was first reported almost two decades ago that ligands with azo functions are capable of accepting electron(s) upon coordination to produce azo-anion radical complexes, thereby exhibiting redox non-innocence. Over the past two decades, there have been numerous reports of such complexes along with their structures and diverse characteristics. The ability of a coordinated azo function to accept one or more electron(s), thereby acting as an electron reservoir, is currently employed to carry out electron transfer catalysis since they can undergo redox transformation at mild potentials due to the presence of energetically accessible energy levels. The cooperative involvement of redox non-innocent ligand(s) containing an azo group and the coordinated metal centre can adjust and modulate the Lewis acidity of the latter through selective ligand-centred redox events, thereby manipulating the capacity of the metal centre to bind to the substrate. We have summarized the list of first row transition metal complexes of iron, cobalt, nickel, copper and zinc with redox non-innocent ligands incorporating an azo function that have been exploited as electron transfer catalysts to effectuate sustainable synthesis of a wide variety of useful chemicals. These include ketazines, pyrimidines, benzothiazole, benzoxazoles, -acyl hydrazones, quinazoline-4(3)-ones, C-3 alkylated indoles, -alkylated anilines and -alkylated heteroamines. The reaction pathways, as demonstrated by catalytic loops, reveal that the azo function of a coordinated ligand can act as an electron sink in the initial steps to bring about alcohol oxidation and thereafter, they serve as an electron pool to produce the final products either HAT or PCET processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt02567e | DOI Listing |
Extremophiles
December 2024
Miami College, Henan University, Kaifeng, 475000, Henan, China.
Azo dye wastewater has garnered significant attention from researchers because of its association with high-temperature, high-salt, and high-alkali conditions. In this study, consortium ZZ efficiently decolorized brown D3G under halophilic and thermophilic conditions. he results indicated that consortium ZZ, which was mainly dominated by Marinobacter, Bacillus, and Halomonas, was achieved decolorization rates ranging from 1 to 10% at temperatures between 40 °C and 50 °C, while maintaining a pH range of 7 to 10 for direct brown D3G degradation.
View Article and Find Full Text PDFJ Fluoresc
December 2024
Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, 61001, Iraq.
In the present work, a diazonium salt is prepared by a diazonium reaction of sulfamerazine in the presence of aqueous hydrochloric acid and sodium nitrate. Structural confirmation of azo compounds synthesize is achieved by mass spectrometry, infrared spectroscopy, and H, C nuclear magnetic resonance. The sample geometry is derived using Density Functional Theory (DFT) and DT-DFT applied to the basis set B3LYPL6-311 + G(d,p).
View Article and Find Full Text PDFNat Commun
December 2024
Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
Affinity chromatography is the method of choice for the rapid purification of proteins from cell extracts or culture supernatants. Here, we present the light-responsive Azo-tag, a short peptide comprising p-(phenylazo)-L-phenylalanine (Pap), whose side chain can be switched from its trans-ground state to the metastable cis-configuration by irradiation with mild UV light. Since only trans-Pap shows strong affinity to α-cyclodextrin (α-CD), a protein exhibiting the Azo-tag selectively binds to an α-CD chromatography matrix under daylight or in the dark but elutes quickly under physiological buffer flow when illuminating the column at 355 nm.
View Article and Find Full Text PDFMolecules
December 2024
School of Water and Environment, Chang'an University, Xi'an 710054, China.
Platanus officinalis fibers (PFs) taking advantage of high-availability, eco-friendly and low-cost characteristics have attracted significant focus in the field of biomaterial application. Polyethyleneimine grafted with polydopamine on magnetic Platanus officinalis fibers (PEI-PDA@M-PFs) were prepared through a two-step process of mussel inspiration and the Michael addition reaction, which can work as an effective multifunctional biomass adsorbent for anionic dye with outstanding separation capacity and efficiency. The as-prepared PEI-PDA@M-PFs possess desirable hydrophilicity, magnetism and positive charge, along with abundant amino functional groups on the surface, facilitating efficient adsorption and the removal of Eriochrome Black T (EBT) dyes from water.
View Article and Find Full Text PDFBull Environ Contam Toxicol
December 2024
Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India.
Nowadays, textile industries are one of the major contributors to water pollution, causing a devastating impact on aquatic ecosystems. Therefore, the current study aimed to investigate the impact of a textile azo dye, Eriochrome Black T (EBT), on the liver of a freshwater fish, Clarias batrachus. Fish were exposed to three concentrations of EBT, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!