Cancer, the leading cause of death worldwide, has witnessed significant advancements in treatment through targeted therapies. Among the proto-oncogenes prevalent in human cancers, KRAS stands out, and recent research has focused on long noncoding RNAs (lncRNAs) as regulators of miRNAs targeting the KRAS oncogene. This study specifically explores lncRNAs involved in the KRAS pathway in colorectal cancer (CRC). To investigate this, researchers employed iron oxide nanoparticles coated with glucose and conjugated with Oleuropein (FeO@Glu-Oleuropein NPs) to evaluate their impact on candidate lncRNAs associated with KRAS pathway deregulation. The study utilized TCGA data to identify genes affected by KRAS mutation and lncRNAs linked to KRAS in CRC. Enrichr and MsigDB databases helped identify relevant pathways. Genes with a correlation coefficient above 0.5 and a P-value less than 0.01 with candidate lncRNAs were selected. MTT and flow cytometry assays determined the anti-proliferative and apoptotic effects of FeO@Glu-Oleuropein NPs on CRC cells (SW480) and normal cells (HEK293). The findings showed that increased expression of FEZF1-AS1, GAS6-AS1, and LINC00920 correlated with mutated KRAS, and co-expressed genes were significantly involved in hypoxia, KRAS signaling, DNA repair, and IL-2/STAT5 signaling pathways. FeO@Glu-Oleuropein NPs exhibited higher toxicity toward cancer cells, with IC50 values of 92 μg/ml for SW480 and 281 μg/ml for HEK293. Flow cytometry analysis revealed a substantial increase in necrotic and apoptotic cells when treated with FeO@Glu-Oleuropein, along with down-regulation of GAS6-AS1, LINC00920, and FEZF1-AS1 lncRNAs in treated cells. In conclusion, this study highlights the therapeutic potential of FeO@Glu-Oleuropein on colon cancer cells in vitro. The identification of lncRNAs involved in the KRAS pathway provides insights into the underlying mechanisms and offers avenues for further research in targeted cancer therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-023-03892-wDOI Listing

Publication Analysis

Top Keywords

cancer cells
12
kras pathway
12
feo@glu-oleuropein nps
12
kras
10
therapeutic potential
8
potential feo@glu-oleuropein
8
targeting kras
8
lncrnas
8
colorectal cancer
8
lncrnas involved
8

Similar Publications

Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis.

Development

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.

View Article and Find Full Text PDF

Vaccinia growth factor-dependent modulation of the mTORC1-CAD axis upon nutrient restriction.

J Virol

January 2025

Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA.

The molecular mechanisms by which vaccinia virus (VACV), the prototypical member of the poxviridae family, reprograms host cell metabolism remain largely unexplored. Additionally, cells sense and respond to fluctuating nutrient availability, thereby modulating metabolic pathways to ensure cellular homeostasis. Understanding how VACV modulates metabolic pathways in response to nutrient signals is crucial for understanding viral replication mechanisms, with the potential for developing antiviral therapies.

View Article and Find Full Text PDF

Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.

View Article and Find Full Text PDF

Antagonisation of Prokineticin Receptor-2 Attenuates Preeclampsia Symptoms.

J Cell Mol Med

January 2025

Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, INSERM, CEA, UMR 1292, Grenoble, France.

Preeclampsia (PE) is the most threatening pathology of human pregnancy. Placenta from PE patients releases harmful factors that contribute to the exacerbation of the disease. Among these factors is the prokineticin1 (PROK1) and its receptor, PROKR2 that we identified as a mediators of PE.

View Article and Find Full Text PDF

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!