Numerous physiological and pathological roles have been attributed to the formation of mitochondrial reactive oxygen species (ROS). However, the individual contribution of different mitochondrial processes independently of bioenergetics remains elusive and clinical treatments unavailable. A notable exception to this complexity is found in the case of monoamine oxidases (MAOs). Unlike other ROS-producing enzymes, especially within mitochondria, MAOs possess a distinct combination of defined molecular structure, substrate specificity, and clinically accessible inhibitors. Another significant aspect of MAO activity is the simultaneous generation of hydrogen peroxide alongside highly reactive aldehydes and ammonia. These three products synergistically impair mitochondrial function at various levels, ultimately jeopardizing cellular metabolic integrity and viability. This pathological condition arises from exacerbated MAO activity, observed in many cardiovascular diseases, thus justifying the exploration of MAO inhibitors as effective cardioprotective strategy. In this context, we not only summarize the deleterious roles of MAOs in cardiac pathologies and the positive effects resulting from genetic or pharmacological MAO inhibition, but also discuss recent findings that expand our understanding on the role of MAO in gene expression and cardiac development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550854 | PMC |
http://dx.doi.org/10.1007/s00395-023-01012-2 | DOI Listing |
Arch Toxicol
January 2025
Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.
Psilocin is a well-studied controlled substance with potential psychotherapeutic applications. However, research gaps remain regarding its metabolism. Our objective was to elucidate a comprehensive Phase I metabolic profile of psilocin to support its forensic management and clinical development.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
The monoamine oxidase (MAO) gene family encodes for enzymes that perform the oxidative deamination of monoamines, a process required to degrade norepinephrine, serotonin, dopamine, and other amines. While mammalian MAO enzymes, MAO A and MAO B, have been extensively studied, the molecular properties of the other family members are only partly uncovered. This study aims to explore the evolution of monoamine oxidases, emphasizing understanding the MAO gene repertoire among vertebrates.
View Article and Find Full Text PDFEur Rev Med Pharmacol Sci
December 2024
Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada.
Objective: Monoamine oxidase (MAO) inhibitors reduce inflammation in a number of in vitro and in vivo models. This finding led to the development of a novel MAO-B selective inhibitor (RG0216) designed to reduce blood-brain barrier penetration. To elucidate RG0216's regulatory role in inflammation-relevant signaling pathways, we employed a transcriptome analytic approach to identify genes that are differentially regulated by RG0216 and then globally identified which inflammation-relevant biological signaling pathways were altered by this drug.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
Trace amines are physiologically active amines present in all organisms. They are structurally identical to traditional monoamines and are rapidly metabolized by monoamine oxidases. The mammalian neurological system generates these molecules at rates equivalent to traditional monoamines, but because of their short half-life, they are only observable in trace quantities.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, India.
Sixteen thio/semicarbazide-based benzyloxy derivatives (BT1-BT16) were synthesized and evaluated for their inhibitory activities against monoamine oxidases (MAOs). Most compounds showed better inhibitory activity against MAO-B than against MAO-A. BT1, BT3, and BT5 showed the greatest inhibitory activity with an identical IC value of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!