In this study, we emphasize the critical role of sample pretreatment. We report on the behavior of NdFeB magnet samples exposed to four different acid media for digestion. NdFeB magnets are becoming a significant source of neodymium, a rare-earth element critical to many technologies and a potential substitute for traditional mining of the element. To address this, we meticulously tested nitric acid, hydrochloric acid, acetic acid, and citric acid, all at a concentration of 1.6 M, as economical and environmentally friendly alternatives to the concentrated mineral acids commonly used in the leaching of these materials. The pivotal stage involves the initial characterization of samples in the solid state using SEM-EDX and XPS analysis to obtain their initial composition. Subsequently, the samples are dissolved in the four aforementioned acids. Finally, neodymium is quantified using ICP-OES. Throughout our investigation, we evaluated some analytical parameters to determine the best candidate for performing the digestion, including time, limits of detection and quantification, accuracy, recovery of spike samples, and robustness. After careful consideration, we unequivocally conclude that 1.6 M nitric acid stands out as the optimal choice for dissolving NdFeB magnet samples, with the pretreatment of the samples being the critical aspect of this report.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10934529.2023.2264135 | DOI Listing |
Food Chem
January 2025
Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. Electronic address:
The high specific surface area of metal-organic framework (MOF) materials endows them with efficient adsorption capabilities, thereby facilitating sample purification. In this study, a novel aluminum-based MOF (Al-MOF) was synthesized and employed as a solid-phase extraction (SPE) adsorbent for the purification of aflatoxins B (AFB), AFB, AFG, and AFG in vegetable oils. It was revealed that Al-MOF adsorbs aflatoxins through hydrogen bonding and π-π interactions.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
Miniaturized mass spectrometers offer significant potential for in situ analysis due to their high specificity and portability. In traditional data-dependent acquisition (DDA) mode, precursor ions for tandem analysis are selected based on the full-scan mass spectrum. However, in situ applications often require the direct analysis of complex samples without extensive sample pretreatment, making them susceptible to chemical noise that can result in false negatives.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Clinical Laboratory, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, People's Republic of China.
Objective: Gastric cancer (GC) is a common malignant tumor of the digestive tract. Accumulating studies suggest that inflammation is linked with the pathogenesis of GC. The study delves into novel hematological inflammatory markers, such as systemic immune-inflammation index (SII), systemic inflammation response index (SIRI), and prognostic nutritional index (PNI), to explore their potential applications in early diagnosis of GC.
View Article and Find Full Text PDFSe Pu
February 2025
College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
Trace contaminants are toxic and their widespread presence in the environment potentially threatens human health. The levels of these pollutants are often difficult to determine directly using instruments owing to the complexities of environment matrices. Hence, pretreatment steps, such as sample purification and concentration, are key along with various processes that enhance the accuracy and sensitivity of the detection method.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Faculty of Dentistry, Department of Restorative Dentistry, Gazi University, Bişkek St. 1. St. Number: 8 Emek, Ankara, Turkey.
Background: Repairing composite resins is a less invasive alternative to complete restoration replacement. To achieve a successful bond between the existing and newly applied composite materials, various surface preparation methods, such as sandblasting and acid etching, have been explored. The aim of the study was to evaluate the effect of different surface treatments on the repair bond strength of a universal nanohybrid composite resin restorative material before and after thermal aging, by utilizing a micro-shear bond strength (µSBS) test.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!