The hydroperoxyalkyl radicals (˙QOOH) are known to play a significant role in combustion and tropospheric processes, yet their direct spectroscopic detection remains challenging. In this study, we investigate molecular stereo-electronic effects influencing the kinetic and thermodynamic stability of a ˙QOOH along its formation path from the precursor, alkylperoxyl radical (ROO˙), and the depletion path resulting in the formation of cyclic ether + ˙OH. We focus on reactive intermediates encountered in the oxidation of acyclic hydrocarbon radicals: ethyl, isopropyl, isobutyl, -butyl, neopentyl, and their alicyclic counterparts: cyclohexyl, cyclohexenyl, and cyclohexadienyl. We report reaction energies and barriers calculated with the highly accurate method Weizmann-1 (W1) for the channels: ROO˙ ⇌ ˙QOOH, ROO˙ ⇌ alkene + ˙OOH, ˙QOOH ⇌ alkene + ˙OOH, and ˙QOOH ⇌ cyclic ether + ˙OH. Using W1 results as a reference, we have systematically benchmarked the accuracy of popular density functional theory (DFT), composite thermochemistry methods, and an explicitly correlated coupled-cluster method. We ascertain inductive, resonance, and steric effects on the overall stability of ˙QOOH and computationally investigate the possibility of forming more stable species. With new reactions as test cases, we probe the capacity of various methods to yield quantitative insights on the elementary steps of combustion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp03598k | DOI Listing |
J Phys Chem A
October 2024
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, United States.
A transient carbon-centered hydroperoxyalkyl intermediate (•QOOH) in the oxidation of cyclopentane is identified by IR action spectroscopy with time-resolved unimolecular decay to hydroxyl (OH) radical products that are detected by UV laser-induced fluorescence. Two nearly degenerate •QOOH isomers, β- and γ-QOOH, are generated by H atom abstraction of the cyclopentyl hydroperoxide precursor. Fundamental and first overtone OH stretch transitions and combination bands of •QOOH are observed and compared with anharmonic frequencies computed by second-order vibrational perturbation theory.
View Article and Find Full Text PDFJ Phys Chem A
September 2024
National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
The first isomerization reaction of an alkylperoxy (RO) radical holds significant importance in low-temperature oxidation, as it governs the branching ratios of the hydroperoxyalkyl (QOOH) radicals, which influence the competition between the chain-propagation and chain-branching reactions. In this study, we systematically calculated high-pressure rate rules for the RO isomerization reaction of monoethers, exploring 5-, 6-, 7-, and 8-membered ring transition states. Primary, secondary, and tertiary carbon sites, where both the abstracting peroxy group and the abstracted hydrogen are located, were considered, with particular emphasis on distinguishing between secondary carbons adjacent (alpha) and nonadjacent to the ether functional group.
View Article and Find Full Text PDFJ Chem Phys
July 2024
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, USA.
Infrared (IR) action spectroscopy is utilized to characterize carbon-centered hydroperoxy-cyclohexyl radicals (·QOOH) transiently formed in cyclohexane oxidation. The oxidation pathway leads to three nearly degenerate ·QOOH isomers, β-, γ-, and δ-QOOH, which are generated in the laboratory by H-atom abstraction from the corresponding ring sites of the cyclohexyl hydroperoxide (CHHP) precursor. The IR spectral features of jet-cooled and stabilized ·QOOH radicals are observed from 3590 to 7010 cm-1 (∼10-20 kcal mol-1) at energies in the vicinity of the transition state (TS) barrier leading to OH radicals that are detected by ultraviolet laser-induced fluorescence.
View Article and Find Full Text PDFJ Phys Chem A
May 2024
College of Chemistry, Sichuan University, Chengdu, 610064, P R China.
The cyclization reactions of keto-hydroperoxide (KHP) radicals leading to the formation of keto cyclic ethers and OH radicals play an important role in low temperature combustion for hydrocarbon fuels or oxygenated hydrocarbon fuels. However, due to the lack of kinetic data of cyclization reactions of KHP radicals, researchers often derive high-pressure-limit rate constants of cyclization reactions of KHP radicals from analogous cyclization reactions of hydroperoxyl alkyl radicals during construction of the combustion mechanism. This study aims to systematically investigate the kinetics of cyclization reactions of KHP radicals involving short-to-large-sized radicals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2024
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323.
The oxidation of cycloalkanes is important in the combustion of transportation fuels and in atmospheric secondary organic aerosol formation. A transient carbon-centered radical intermediate (•QOOH) in the oxidation of cyclohexane is identified through its infrared fingerprint and time- and energy-resolved unimolecular dissociation dynamics to hydroxyl (OH) radical and bicyclic ether products. Although the cyclohexyl ring structure leads to three nearly degenerate •QOOH isomers (β-, γ-, and δ-QOOH), their transition state (TS) barriers to OH products are predicted to differ considerably.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!