The bonding structures of tetrahedrane, phosphatetrahedrane, diphosphatetrahedrane and triphosphatetrahedrane are studied by employing an intrinsic quasi-atomic orbital analysis. Ethane, cyclopropane and tetrahedral P are employed as reference systems. The orbital analysis is paired with the computation of strain energies isodesmic reactions. The results show that the increase in geometric strain upon transition from ethane to cyclopropane to tetrahedrane weakens the CC bonds, despite leading to shorter C-C interatomic distances. With the increase in strain, the orbitals centered on C and involved in the bonding of the cage structure are observed to have elevated p-character, and the orbital structure of C deviates from sp hybridization. The systematic substitution of CH groups by P atoms in the cage structure of tetrahedrane leads to stronger CC bonds, larger angles in the cage structures of the resulting phosphatetrahedranes, lower p-character in the orbitals involved in the bonding of the cages, and lower strain energies. It is found that P is more amenable to strained molecular arrangements than is C, and that the propensity of a given atom to hybridize s and p functions, or the lack thereof, has implications in the stability of molecules with strained geometries. The combination of the calculations presented here with the existing literature provides insight into the apparent propensity of tetrahedrane and P to 'break' their tetrahedral structures. Trends in the bonding interactions, such as bond strengths, s- and p-orbital characters and charge transfer are identified and related to the strain energy observed in each of the analyzed systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp03619gDOI Listing

Publication Analysis

Top Keywords

orbital analysis
8
ethane cyclopropane
8
strain energies
8
involved bonding
8
cage structure
8
tetrahedrane
5
strain
5
analysis bonding
4
bonding tetrahedrane
4
tetrahedrane phosphorus-substituted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!