Infertility is an important issue among couples worldwide which is caused by a variety of complex diseases. Male infertility is a problem in 7% of all men. spermatogenesis (IVS) is the experimental approach that has been developed for mimicking seminiferous tubules-like functional structures . Currently, various researchers are interested in finding and developing a microenvironmental condition or a bioartificial testis applied for fertility restoration via gamete production . The tissue engineering (TE) has developed new approaches to treat male fertility preservation through development of functional male germ cells. This makes TE a possible future strategy for restoration of male fertility. Although 3D culture systems supply the perception of the effect of cellular interactions in the process of spermatogenesis, formation of a native gradient of autocrine/paracrine factors in 3D culture systems have not been considered. These results collectively suggest that maintaining the microenvironment of testicular cells even in the form of a 3D-culture system is crucial in achieving spermatogenesis . It is also possible to engineer the testicular structures using biomaterials to provide a supporting scaffold for somatic and stem cells. The insemination of these cells with GFs is possible for temporally and spatially adjusted release to mimic the microenvironment of the in situ seminiferous epithelium. This review focuses on recent studies and advances in the application of TE strategies to cell-tissue culture on synthetic or natural scaffolds supplemented with growth factors.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14647273.2023.2251678DOI Listing

Publication Analysis

Top Keywords

tissue engineering
8
male infertility
8
male fertility
8
culture systems
8
male
5
engineering studies
4
studies male
4
infertility disorder
4
disorder infertility
4
infertility issue
4

Similar Publications

Background: Muscle and adipose tissue are the most critical indicators of beef quality, and their development and function are regulated by noncoding RNAs (ncRNAs). However, the differential regulatory mechanisms of ncRNAs in muscle and adipose tissue remain unclear.

Results: In this study, 2,343 differentially expressed mRNAs (DEMs), 235 differentially expressed lncRNAs (DELs), 95 differentially expressed circRNAs (DECs) and 54 differentially expressed miRNAs (DEmiRs) were identified in longissimus dorsi muscle (LD), subcutaneous fat (SF) and perirenal fat (VF) in Qinchuan beef cattle.

View Article and Find Full Text PDF

Chinese Medicine Combined with Adipose Tissue-Derived Mesenchymal Stem Cells: A New Promising Aspect of Integrative Medicine.

Chin J Integr Med

January 2025

Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.

Adipose tissue-derived mesenchymal stem cells (ADSCs) are crucially involved in various biological processes because of their self-renewal, multi-differentiation, and immunomodulatory activities. Some ADSC's characteristics have been associated with the basic theory of Chinese medicine (CM), especially the Meridian theory. CM can improve the biological properties of ADSCs to facilitate their use in injury treatment, restore immune homeostasis, and inhibit inflammatory responses.

View Article and Find Full Text PDF

Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.

View Article and Find Full Text PDF

Purpose: In locations where the proton energy spectrum is broad, lineal energy spectrum-based proton biological effects models may be more accurate than dose-averaged linear energy transfer (LET) based models. However, the development of microdosimetric spectrum-based biological effects models is hampered by the extreme computational difficulty of calculating microdosimetric spectra. Given a precomputed library of lineal energy spectra for monoenergetic protons, a weighted summation can be performed which yields the lineal energy spectrum of an arbitrary polyenergetic beam.

View Article and Find Full Text PDF

Objective: To evaluate the effect of the toothpaste containing ε-poly-L-lysine (ε-PL) and funme peptide (FP) as key components on oral microbial composition and oral health.

Methods: An oral microbiome study was initially carried out to analyze the variation in the oral microbiota before and after use of antimicrobial peptide (AMP) toothpaste. Subsequently, a clinical trial was independently performed to assess the efficacy of AMP toothpaste by measuring the dental plaque index (PLI), volatile sulfur compounds (VSCs) levels, modified bleeding index (mBI), and bleeding on probing rate (BOP%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!