Variants in the gene myosin-binding protein C3 () account for approximately 50% of familial hypertrophic cardiomyopathy (HCM), leading to reduced levels of myosin-binding protein C3 (MyBP-C), the protein product made by gene . Elucidation of the pathways that regulate MyBP-C protein homeostasis could uncover new therapeutic strategies. Toward this goal, we screened a library of 2,426 bioactive compounds and identified JG98, an allosteric modulator of heat shock protein 70 that inhibits interaction with Bcl-2-associated athanogene (BAG) domain co-chaperones. JG98 reduces MyBP-C protein levels. Furthermore, genetic reduction of BAG3 phenocopies treatment with JG-98 by reducing MYBP-C protein levels.. Thus, an unbiased compound screen identified the heat shock protein 70-BAG3 complex as a regulator of MyBP-C stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544073PMC
http://dx.doi.org/10.1016/j.jacbts.2023.04.009DOI Listing

Publication Analysis

Top Keywords

mybp-c protein
16
myosin-binding protein
12
protein
9
screen identified
8
complex regulator
8
heat shock
8
shock protein
8
protein levels
8
mybp-c
5
unbiased screen
4

Similar Publications

Background: Cardiac myosin binding protein C (cMyC) is an emerging new biomarker of myocardial injury rising earlier and cleared faster than cardiac troponins. It has discriminatory power similar to high-sensitive troponins in diagnosing myocardial infarction in patients presenting with chest pain. It is also associated with outcome in patients with acute heart failure.

View Article and Find Full Text PDF

[Hypertrophic cardiomyopathy with left ventricular excessive trabeculation resulting from MYBPC3 gene mutation: a case report].

Zhonghua Xin Xue Guan Bing Za Zhi

January 2025

Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, China.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy: insights into pathophysiology and novel therapeutic strategies from clinical studies.

Egypt Heart J

January 2025

Department of Physiology, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria.

Background: Hypertrophic cardiomyopathy (HCM) is a frequently encountered cardiac condition worldwide, often inherited, and characterized by intricate phenotypic and genetic manifestations. The natural progression of HCM is diverse, largely due to mutations in the contractile and relaxation proteins of the heart. These mutations disrupt the normal structure and functioning of the heart muscle, particularly affecting genes that encode proteins involved in the contraction and relaxation of cardiac muscle.

View Article and Find Full Text PDF

The cardiac myosin binding protein-C (cMyBP-C) regulates cross-bridge formation and controls the duration of systole and diastole at the whole heart level. As known, mutations in cMyBP-C increase the cross-bridge number and rate of their cycling, hypercontractility, and myocardial hypertrophy. We investigated the effects of the mutations D75N and P161S of cMyBP-C related to hypertrophic cardiomyopathy on the mechanism of force generation in isolated slow skeletal muscle fibers.

View Article and Find Full Text PDF

Heart failure with preserved ejection fraction (HFpEF) is a major public health challenge, affecting millions worldwide and placing a significant burden on healthcare systems due to high hospitalization rates and limited treatment options. HFpEF is characterized by impaired cardiac relaxation, or diastolic dysfunction. However, there are no therapies that directly treat the primary feature of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!