Recently, speckle visibility spectroscopy (SVS) was non-invasively applied on the head to monitor cerebral blood flow. The technique, using a multi-pixel detecting device (e.g., camera), allows the detection of a larger number of speckles, increasing the proportion of light that is detected. Due to this increase, it is possible to collect light that has propagated deeper through the brain. As a direct consequence, cerebral blood flow can be monitored. However, isolating the cerebral blood flow from the other layers, such as the scalp or skull components, remains challenging. In this paper, we report our investigations on the depth-sensitivity of laser interferometry speckle visibility spectroscopy (iSVS). Specifically, we varied the depth of penetration of the laser light into the head by tuning the source-to-detector distance, and identified the transition point at which cerebral blood flow in humans and rabbits starts to be detected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545208PMC
http://dx.doi.org/10.1364/BOE.498815DOI Listing

Publication Analysis

Top Keywords

cerebral blood
20
blood flow
20
speckle visibility
12
visibility spectroscopy
12
laser interferometry
8
interferometry speckle
8
spectroscopy isvs
8
source-to-detector distance
8
humans rabbits
8
cerebral
5

Similar Publications

Blood leukocyte-based clusters in patients with traumatic brain injury.

Front Immunol

January 2025

Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Background: Leukocytes play an important role in inflammatory response after a traumatic brain injury (TBI). We designed this study to identify TBI phenotypes by clustering blood levels of various leukocytes.

Methods: TBI patients from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were included.

View Article and Find Full Text PDF

Background: Heart failure (HF) has become a public healthcare concern with significant costs to countries because of the aging world population. Acute heart failure (AHF) is a common condition faced frequently in emergency departments, and patients often present to hospitals with complaints of breathlessness. The patient must be evaluated with anamnesis, physical examination, blood, and imaging results to diagnose AHF.

View Article and Find Full Text PDF

Objective: This study investigated the effects of early treatment and pathophysiology on eosinophilic granulomatosis with polyangiitis neuropathy (EGPA-N).

Methods: Twenty-six consecutive patients with EGPA-N were diagnosed and treated within a day of admission and underwent clinical analysis. Peripheral nerve recovery rates were evaluated after early treatment by identifying the damaged peripheral nerve through detailed neurological findings.

View Article and Find Full Text PDF

Introduction: Cerebral small vessel disease (CSVD) is a chronic systemic degenerative disease affecting small blood vessels in the brain, leading to cognitive impairments. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique that applies low electrical currents to the scalp, shows promise in treating cognitive and movement disorders. However, further clinical evaluation is required to assess the long-term effects of tDCS on neuroplasticity and gait in patients with CSVD.

View Article and Find Full Text PDF

Background: Neurovascular coupling (NVC), as indicated by a comprehensive analysis of the amplitude of low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), provides mechanistic insights into neurological disorders. Patients undergoing peritoneal dialysis (PD) and hemodialysis (HD) often face cognitive impairment, the causes of which are not fully understood.

Methods: ALFF was derived from functional magnetic resonance imaging, and CBF was quantified using arterial spin labeling in a cohort comprising 58 patients with PD, 60 patients with HD and 62 healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!