The COVID-19 pandemic has highlighted the importance in the understanding of the biology of SARS-CoV-2. After more than two years since the first report of COVID-19, it remains crucial to continue studying how SARS-CoV-2 proteins interact with the host metabolism to cause COVID-19. In this review, we summarize the findings regarding the functions of the 16 non-structural, 6 accessory and 4 structural SARS-CoV-2 proteins. We place less emphasis on the spike protein, which has been the subject of several recent reviews. Furthermore, comprehensive reviews about COVID-19 therapeutic have been also published. Therefore, we do not delve into details on these topics; instead we direct the readers to those other reviews. To avoid confusions with what we know about proteins from other coronaviruses, we exclusively report findings that have been experimentally confirmed in SARS-CoV-2. We have identified host mechanisms that appear to be the primary targets of SARS-CoV-2 proteins, including gene expression and immune response pathways such as ribosome translation, JAK/STAT, RIG-1/MDA5 and NF-kβ pathways. Additionally, we emphasize the multiple functions exhibited by SARS-CoV-2 proteins, along with the limited information available for some of these proteins. Our aim with this review is to assist researchers and contribute to the ongoing comprehension of SARS-CoV-2's pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544941 | PMC |
http://dx.doi.org/10.3389/fimmu.2023.1249607 | DOI Listing |
J Med Virol
February 2025
Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, P. R. China.
Immunity against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can be induced through either infection with the virus or vaccination, providing protection against reinfection or reducing the risk of severe clinical outcomes. In this study, we recruited 172 volunteers who received different vaccination regimens, including 124 individuals who had recovered from breakthrough infections caused by the Omicron variant (27 with 2 doses, 49 with 3 doses, and 48 with 4 doses) and 48 healthy donors who did not experience breakthrough infections (all of whom received a fourth dose during the infection wave). We measured neutralizing antibody levels against Omicron BA.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Crucell Integration, Janssen Research and Development, Beerse, Belgium.
We conducted a randomized, Phase 2 trial to assess the safety and humoral immunogenicity of reduced doses/dose volume of the standard dose of Ad26.COV2.S COVID-19 vaccine (5 × 10 viral particles [vp]) in healthy adolescents aged 12-17 years.
View Article and Find Full Text PDFSARS-CoV-2 nonstructural protein 1 (nsp1) promotes innate immune evasion by inhibiting host translation in human cells. However, the role of nsp1 in other host species remains elusive, especially in bats which are natural reservoirs of sarbecoviruses and possess a markedly different innate immune system than humans. Here, we reveal that SARS-CoV-2 nsp1 potently inhibits translation in bat cells from Rhinolophus lepidus, belonging to the same genus as known sarbecovirus reservoirs hosts.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Gastroenterology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China.
Background And Aims: The impact of coronavirus disease 2019 (COVID-19) on patients with acute-on-chronic liver failure (ACLF) remains unclear. To investigate the clinical characteristics of patients with ACLF complicated with COVID-19 in order to provide evidence for the precise treatment of this patient population.
Methods: A total of 34 ACLF patients with COVID-19 admitted to these three hospitals from December 2022 to August 2023 were included as the ACLF+COVID-19 group.
Pept Sci (Hoboken)
November 2024
Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, United States of America.
The COVID-19 pandemic drove a uniquely fervent pursuit to explore the potential of peptide, antibody, protein, and small-molecule based antiviral agents against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The interaction between the SARS-CoV2 spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor that mediates viral cell entry was a particularly interesting target given its well described protein-protein interaction (PPI). This PPI is mediated by an α-helical portion of ACE2 binding to the receptor binding domain (RBD) of the spike protein and thought to be susceptible to blockade through molecular mimicry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!