AI Article Synopsis

  • Inosine monophosphate dehydrogenase (IMPDH) is an essential enzyme for guanosine triphosphate (GTP) production, regulated through feedback inhibition and assembly into filaments that enhance nucleotide synthesis.
  • In the vertebrate retina, two splice variants (IMPDH1(546) and IMPDH1(595)) behave differently in terms of activity and regulation, especially under dark conditions where phosphorylation affects their assembly.
  • Mutations in the S477 residue were found to block filament assembly and resensitize IMPDH variants to GTP inhibition, indicating phosphorylation is a key regulatory mechanism for tuning retinal GTP synthesis in response to metabolic needs.

Article Abstract

Inosine monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in guanosine triphosphate (GTP) synthesis and is controlled by feedback inhibition and allosteric regulation. IMPDH assembles into micron-scale filaments in cells, which desensitizes the enzyme to feedback inhibition by GTP and boosts nucleotide production. The vertebrate retina expresses two tissue-specific splice variants IMPDH1(546) and IMPDH1(595). IMPDH1(546) filaments adopt high and low activity conformations, while IMPDH1(595) filaments maintain high activity. In bovine retinas, residue S477 is preferentially phosphorylated in the dark, but the effects on IMPDH1 activity and regulation are unclear. Here, we generated phosphomimetic mutants to investigate structural and functional consequences of phosphorylation in IMPDH1 variants. The S477D mutation re-sensitized both variants to GTP inhibition, but only blocked assembly of IMPDH1(595) filaments and not IMPDH1(546) filaments. Cryo-EM structures of both variants showed that S477D specifically blocks assembly of the high activity assembly interface, still allowing assembly of low activity IMPDH1(546) filaments. Finally, we discovered that S477D exerts a dominant-negative effect in cells, preventing endogenous IMPDH filament assembly. By modulating the structure and higher-order assembly of IMPDH, phosphorylation at S477 acts as a mechanism for downregulating retinal GTP synthesis in the dark, when nucleotide turnover is decreased. Like IMPDH1, many other metabolic enzymes dynamically assemble filamentous polymers that allosterically regulate activity. Our work suggests that posttranslational modifications may be yet another layer of regulatory control to finely tune activity by modulating filament assembly in response to changing metabolic demands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542554PMC
http://dx.doi.org/10.1101/2023.09.21.558867DOI Listing

Publication Analysis

Top Keywords

filament assembly
12
impdh1546 filaments
12
activity
8
assembly
8
splice variants
8
gtp synthesis
8
feedback inhibition
8
low activity
8
impdh1595 filaments
8
high activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!