A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A multi-layer core-shell structure CoFeO@FeC@NiO composite with high broadband electromagnetic wave-absorption performance. | LitMetric

Enhancing the absorption strength of electromagnetic waves and broadening the absorption band are constant goals in designing and preparing absorbing materials. The use of composites has shown to be a very efficient method for acquiring broadband-absorbing materials, while the construction of a core-shell structure has demonstrated a significant enhancement in absorption capability. In this paper, the nanocomposite metal-organic framework (MOF) derivative CoFeO@C with a double core-shell structure and the nanocomposite MOF derivative CoFeO@FeC@NiO with a three-layered core-shell structure have been prepared using a chemical compound. The multi-layer structure provides more active sites for the multiple reflection and scattering of electromagnetic waves, effectively improving the attenuation capability. The effective absorption band (EAB) (reflection loss (RL) ≤ -5 dB) of both CoFeO@C and CoFeO@FeC@NiO are broadened compared to that of the ZIF-67 derivative. In particular, the minimum reflection loss (RL) of CoFeO@C was -52.7 dB at 13.3 GHz and 2.04 mm, and the EAB (RL ≤ -5 dB) is as wide as 9.35 GHz. Compared with the ZIF-67 derivative, the EAB exhibits a twofold rise, accompanied by a corresponding thickness increase of just 0.24 mm. At a matched thickness of 2.2 mm, the EAB of CoFeO@FeC@NiO can even reach 11.9 GHz.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr03837hDOI Listing

Publication Analysis

Top Keywords

core-shell structure
16
electromagnetic waves
8
absorption band
8
mof derivative
8
reflection loss
8
compared zif-67
8
zif-67 derivative
8
structure
5
multi-layer core-shell
4
cofeo@fec@nio
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!