Molecular and biochemical basis of softening in tomato.

Mol Hortic

Divison of Plant and Crop Sciences, University of Nottingham, Sutton Bonington, Loughborough, Leics, LE12 5RD, UK.

Published: February 2022

We review the latest information related to the control of fruit softening in tomato and where relevant compare the events with texture changes in other fleshy fruits. Development of an acceptable texture is essential for consumer acceptance, but also determines the postharvest life of fruits. The complex modern supply chain demands effective control of shelf life in tomato without compromising colour and flavour.The control of softening and ripening in tomato (Solanum lycopersicum) are discussed with respect to hormonal cues, epigenetic regulation and transcriptional modulation of cell wall structure-related genes. In the last section we focus on the biochemical changes closely linked with softening in tomato including key aspects of cell wall disassembly. Some important elements of the softening process have been identified, but our understanding of the mechanistic basis of the process in tomato and other fruits remains incomplete, especially the precise relationship between changes in cell wall structure and alterations in fruit texture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515243PMC
http://dx.doi.org/10.1186/s43897-022-00026-zDOI Listing

Publication Analysis

Top Keywords

softening tomato
12
cell wall
12
tomato
6
softening
5
molecular biochemical
4
biochemical basis
4
basis softening
4
tomato review
4
review latest
4
latest control
4

Similar Publications

This research investigates potential mechanisms of novel magnetic field (MF) treatments in inhibiting cell-wall-degrading enzymes, aiming to reduce weight loss and preserve the post-harvest quality of tomatoes ( L.) as a climacteric fruit. The optimization of the processing parameters, including MF intensity (1, 2, 3 mT), frequency (0, 50, 100 Hz), and duration (10, 20, 30 min), was accomplished by applying an orthogonal array design.

View Article and Find Full Text PDF

Allelic variation in an expansin, MdEXP-A1, contributes to flesh firmness at harvest in apples.

Mol Hortic

January 2025

State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.

Flesh firmness is a core quality trait in apple breeding because of its correlation with ripening and storage. Quantitative trait loci (QTLs) were analyzed through bulked segregant analysis sequence (BSA-seq) and comparative transcriptome analysis (RNA-seq) to explore the genetic basis of firmness formation. In this study, phenotypic data were collected at harvest from 251 F hybrids derived from 'Ruiyang' and 'Scilate', the phenotype values of flesh firmness at harvest were extensively segregated for two consecutive years.

View Article and Find Full Text PDF

Background: Fresh vegetables are commodities that have a high tendency to deteriorate after harvest, causing significant losses in economic and environmental costs associated with plant food loss. Therefore, this study was carried out to evaluate the effects of both un-irradiated (UISA) and irradiated sodium alginate (ISA) as an edible coating for preserving cherry tomato fruits under storage conditions. The FTIR, XRD, TGA, SEM, and TEM were used to characterize the UISA and ISA (25, 50, 75, and 100 kGy), which demonstrated that the alginate polymer was degraded and low molecular-weight polysaccharides were formed as a result of irradiation, particularly with the 100 kGy dose level.

View Article and Find Full Text PDF

Ripening significantly influences fruit quality and commercial value. Peaches (Prunus persica), a climacteric fruit, exhibit increased ethylene biosynthesis and decreased fruit firmness during ripening. NAC-like proteins activated by AP3/P1 (NAP) proteins are a subfamily of NAC transcription factors, and certain NAPs have been shown to intervene in fruit ripening.

View Article and Find Full Text PDF

Mutation of tomato xyloglucan transglucosylase/hydrolase5 increases fruit firmness and contributes to prolonged shelf life.

J Plant Physiol

December 2024

Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China. Electronic address:

Fruit ripening in tomato is a highly coordinated developmental process accompanied with fruit softening, which is closely associated with cell wall degradation and remodeling. Xyloglucan endotransglucosylase/hydrolases (XTHs) are known to play an essential role in cell wall xyloglucan metabolism. Tomato XTH5 exhibits xyloglucan endotransglucosylase (XET) activity in vitro, but the understanding of its biological role in fruit ripening remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!