Understanding how the spatial arrangement of remnant green spaces in cities complements biodiversity provides an opportunity for synergy between urban development and biological conservation. However, the geography of urbanization is shifting from Europe and North America to Asia and Africa, and more research is needed for fast-growing regions. To understand how shifting urbanization shapes biodiversity patterns, we analyzed the contribution of landscape factors in explaining vertebrate species richness in urban areas across biogeographic realms. We used variation partitioning to quantify and compare the relative importance of landscape factors (composition and configuration) and environmental factors (climate, elevation, and latitude) in explaining vertebrate species richness in landscapes with at least a million inhabitants across biogeographic realms. Our results pointed out that in the Indo-Malayan, the Afrotropical, and the Neotropical realm (on average of 16.46%) and China and India (11.88%), the influence of landscape factors on vertebrate species richness are significantly higher than that of the Palearctic and Nearctic realms (6.48%). Our findings outline the importance of landscape composition and configuration in shaping biodiversity patterns in regions with fast urban growth during the next two decades, such as Africa, Latin America, and Southeastern Asia. We suggest improving land governance and urban planning to construct eco-friendly landscape structures to mitigate biodiversity loss due to urbanization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547837 | PMC |
http://dx.doi.org/10.1038/s41598-023-43896-z | DOI Listing |
Trop Anim Health Prod
January 2025
Science Center of Chapadinha, Federal University of Maranhão, Chapadinha, Maranhao, Brazil.
This study investigated the modulation of Eimeria spp. parasite load and its impact on productivity parameters in lambs fed varying levels of babassu by-product (BBP). Twenty-four Dorper × Santa Inês lambs naturally infected with Eimeria spp.
View Article and Find Full Text PDFOecologia
January 2025
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.
Immigration and emigration are key demographic processes of animal population dynamics. However, we have limited knowledge on how fine-scale movement varies over space and time. We developed a Bayesian integrated population model using individual mark-recapture and count data to characterize fine-scale movement of stream fish at 20-m resolution in a 740-m study area every two months for 28 months.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Department of Agricultural Biotechnology, Faculty of Agriculture, Kırşehir Ahi Evran University, 40100, Kirsehir, Türkiye.
The present study was conducted on specific skeletal muscles of six weaned male kids from each of the Angora, Hair, Honamlı, and Kilis goat breeds. The relationships between the expression of myogenic factor 5 (Myf5) and myogenic factor 6 (Myf6) genes and muscle fibre characteristics were analysed. Muscle samples from the longissimus dorsi (LD) and semitendinosus (ST) were collected from six 90-day-old weaned male kids of each breed.
View Article and Find Full Text PDFNaturwissenschaften
January 2025
Institute of Bioengineering and Biosciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
While most dentate non-mammalian vertebrates possess simple conical teeth, some demonstrate complex tooth shapes. Lake Malawi cichlid fishes are an extreme example of this, exhibiting a myriad of tooth shapes driven by an ecologically derived rapid evolution of closely related but distinct species. Tooth shape in mammals is generally considered to be established by signaling centers called primary and secondary enamel knots, which are not believed to be present in non-mammalian vertebrates.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA.
The mechanisms underlying cooperative activation and inactivation of myocardial force extend from local, near-neighbor interactions involving troponin-tropomyosin regulatory units (RU) and crossbridges (XB) to more global interactions across the sarcomere. To better understand these mechanisms in the hearts of small and large mammals, we undertook a simplified mathematical approach to assess the contribution of three types of near-neighbor cooperative interactions, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!