Comparative assessment of cutaneous pharmacokinetics (cPK) by dermal microdialysis (dMD) appears to be suitable to evaluate the bioequivalence (BE) of topical dermatological drug products applied to the skin (TDDPs). Although dMD studies in the literature have reported inconclusive BE assessments, we have addressed several methodological deficiencies to improve dMD's capability to assess BE between reference (R) and approved generic (referred to as test (T)) gel and cream products of metronidazole (MTZ). The 90% confidence interval (CI) of the geometric mean ratios for the Ln(AUC) and Ln(C) endpoints was centered within the BE limits of 80-125%. The CIs extended outside this range as the proof-of-principle study was not statistically powered to demonstrate BE (N = 7 rabbits). A power analysis suggests that, with the variability observed in this study, 21 rabbits for the cream and 11 rabbits for the gel would be sufficient to support an evaluation of BE with the 2 probe replicates we used, and only 10 and 5 rabbits would be sufficient to power the study for the cream and gel, respectively, if 4 probe replicates are used for each treatment per rabbit. These results indicate that dMD when properly controlling variables can be used to support BE assessments for TDDPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-023-02660-2 | DOI Listing |
J Dermatol Sci
June 2024
Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan; Advanced Research Initiative for Human High Performance (ARIHHP), Japan. Electronic address:
Background: Metabolites in biofluids can serve as biomarkers for diagnosing diseases and monitoring body conditions. Among the available biofluids, interstitial fluid (ISF) in the skin has garnered considerable attention owing to its advantages, which include inability to clot, easy access to the skin, and possibility of incorporating wearable devices. However, the scientific understanding of skin ISF composition is limited.
View Article and Find Full Text PDFExp Parasitol
February 2024
Dept. of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India.
Objectives: Post-kala-azar-dermal leishmaniasis (PKDL) is an infectious skin disease that occurs as sequela of visceral leishmaniasis (VL) and causes cutaneous lesions on the face and other exposed body parts. While the first-line drug miltefosine is typically used for 28 days to treat VL, 12 weeks of therapy is required for PKDL, highlighting the need to evaluate the extent of drug penetration at the dermal site of infection. In this proof-of-concept study, we demonstrate the use of a minimally invasive sampling technique called microdialysis to measure dermal drug exposure in a PKDL patient, providing a tool for the optimization of treatment regimens.
View Article and Find Full Text PDFAAPS PharmSciTech
October 2023
Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, 75 DeKalb Ave., Brooklyn, New York, 11201, USA.
Comparative assessment of cutaneous pharmacokinetics (cPK) by dermal microdialysis (dMD) appears to be suitable to evaluate the bioequivalence (BE) of topical dermatological drug products applied to the skin (TDDPs). Although dMD studies in the literature have reported inconclusive BE assessments, we have addressed several methodological deficiencies to improve dMD's capability to assess BE between reference (R) and approved generic (referred to as test (T)) gel and cream products of metronidazole (MTZ). The 90% confidence interval (CI) of the geometric mean ratios for the Ln(AUC) and Ln(C) endpoints was centered within the BE limits of 80-125%.
View Article and Find Full Text PDFThe cutaneous vasculature is an accessible tissue that can be used to assess microvascular function in humans. Intradermal microdialysis is a minimally invasive technique used to investigate mechanisms of vascular smooth muscle and endothelial function in the cutaneous circulation. This technique allows for the pharmacological dissection of the pathophysiology of microvascular endothelial dysfunction as indexed by decreased nitric oxide-mediated vasodilation, an indicator of cardiovascular disease development risk.
View Article and Find Full Text PDFClin Transl Sci
October 2023
GSK, Philadelphia, Pennsylvania, USA.
Pharmacological challenge models are deployed to evaluate drug effects during clinical development. Intradermal injection of Substance P (SP) neuropeptide, a potential challenge agent for investigating local mediators, is associated with wheal and flare response mediated by the MRGPRX2 receptor. Although dose-dependent data on SP effects exist, full characterization and information on potential carryover effect after repeated challenge are lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!