Anadromous salmonids exhibit partial migration, where some individuals within a population migrate down to the ocean through complex interactions between body size and photoperiod. This study aimed to integrate the ontogenetic and seasonal patterns of smoltification, a series of changes for future marine life, in a strain of masu salmon (Oncorhynchus masou). Spring smoltification, as evidenced by the activation of gill Na,K-ATPase (NKA), was induced during winter under an advanced photoperiod. In addition, juveniles showed an additional peak in gill NKA activity in August regardless of the photoperiod. When juvenile masu salmon were subjected to feeding manipulations during the first spring/summer, only fish exceeding a fork length of 12 cm exhibited an increased gill NKA activity. We tested whether size-driven smoltification required a long-day period by exposing juveniles to a constant short-day length (9-h light and 15-h dark) from January to November. Juveniles under short-day conditions exceeded 12 cm in June but showed no signs of smoltification. Thus, masu salmon undergo photoperiod-limited, size-driven smoltification during the first summer and size-limited, photoperiod-driven smoltification the following spring. The findings of the present study provide a framework for further elucidation of the physiological mechanisms underlying partial migration in salmonids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547828PMC
http://dx.doi.org/10.1038/s41598-023-43632-7DOI Listing

Publication Analysis

Top Keywords

masu salmon
16
salmon oncorhynchus
8
oncorhynchus masou
8
partial migration
8
gill nka
8
nka activity
8
size-driven smoltification
8
smoltification
6
size-driven parr-smolt
4
parr-smolt transformation
4

Similar Publications

Masu salmon (Oncorhynchus masou) are the only Pacific salmon endemic to Asia. Some researchers prefer to categorize these salmon into four subspecies (masu - O. m.

View Article and Find Full Text PDF

Distinct food-web transfers of Cs to fish in river and lake ecosystems: A case study focusing on masu salmon in the Fukushima evacuation zone.

J Environ Radioact

December 2024

Institute of Environmental Radioactivity, Fukushima University, Fukushima, Fukushima 960-1296, Japan; Faculty of Symbiotic Systems Science, Fukushima University, Fukushima, Fukushima 960-1296, Japan.

This study was conducted to elucidate the spatial and size variations, and food-web transfer of Cs in freshwater fish in the upper reaches of the Ukedo River system, a highly contaminated river system flowing through the Fukushima evacuation zone. Fish collection and environmental surveys were conducted in the summer of 2020 at five forest rivers and at the Ogaki Dam reservoir (an artificial lake) with different air dose rates (mean 0.20-3.

View Article and Find Full Text PDF

Anadromous Pacific salmon (genus Oncorhynchus) are known for homing behavior to their natal rivers based on olfactory imprinted memories during seaward migration. The SNARE complex is a regulator of vesicle exocytosis from the presynaptic membrane. Our previous study suggested that its component genes (Snap25, Stx1, and Vamp2) are more highly expressed in the olfactory nervous system (ONS) during the migration stages associated with olfactory imprinting in the evolutionary species of Pacific salmon, such as chum (O.

View Article and Find Full Text PDF

Investigating ventricular diastolic properties is crucial for understanding the physiological cardiac functions in organisms and unraveling the pathological mechanisms of cardiovascular disorders. Ventricular stiffness, a fundamental parameter that defines ventricular diastolic functions in chordates, is typically analyzed using the end-diastolic pressure-volume relationship (EDPVR). However, comparing ventricular stiffness accurately across chambers of varying maximum volume capacities has been a long-standing challenge.

View Article and Find Full Text PDF

In summer, the survival zones of cold-water species are predicted to narrow by both increasing water temperatures from the surface and by expanding hypoxic zones from the lake bottom. To examine how the abundance of cold-water fishes changes along environmental gradients, we assessed the vertical environmental DNA (eDNA) distributions of three salmonid species which may have different water temperature tolerances during both stratification and turnover periods using quantitative PCR (qPCR). In addition, we examined on the vertical distribution of diverse fish fauna using an eDNA metabarcoding assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!